291
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic analysis of a thick hollow cylinder made of two-dimensional functionally graded material using time-domain spectral element method

ORCID Icon, &
Pages 1518-1535 | Received 01 Dec 2017, Accepted 28 Jan 2018, Published online: 09 Mar 2018

References

  • Y. Miyamoto, W. A. Kaysser, B. H. Rabin, A. Kawasaki, and R. G. Ford, Functionally Graded Materials: Design, Processing and Applications [M]. Springer Science & Business Media, Boston, MA, 2013.
  • H. A. Bruck, “A one-dimensional model for designing functionally graded materials to manage stress waves [J],” Int. J. Solids Struct., vol. 37, no. 44, pp. 6383–6395, 2000. DOI: 10.1016/S0020-7683(99)00236-X.
  • J. E. Lefebvre et al., “Acoustic wave propagation in continuous functionally graded plates: an extension of the Legendre polynomial approach [J],” IEEE Trans. Ultrason., Ferroelectr., Frequency Control., vol. 48, no. 5, pp. 1332–1340, 2001. DOI: 10.1109/58.949742.
  • G. J. Nie and Z. Zhong, “Semi-analytical solution for three-dimensional vibration of functionally graded circular plates [J],” Comput. Methods Appl. Mech. Eng., vol. 196, no. 49, pp. 4901–4910, 2007.
  • G. J. Nie and Z. Zhong, “Vibration analysis of functionally graded annular sectorial plates with simply supported radial edges [J],” Compos. Struct., vol. 84, no. 2, pp. 167–176, 2008. DOI: 10.1016/j.compstruct.2007.07.003.
  • D. Sun and S. N. Luo, “Wave propagation and transient response of a FGM plate under a point impact load based on higher-order shear deformation theory [J],” Compos. Struct., vol. 93, no. 5, pp. 1474–1484, 2011. DOI: 10.1016/j.compstruct.2010.12.002.
  • X. Cao, F. Jin, and I. Jeon, “Calculation of propagation properties of Lamb waves in a functionally graded material (FGM) plate by power series technique [J],” NDT E Int., vol. 44, no. 1, pp. 84–92, 2011. DOI: 10.1016/j.ndteint.2010.09.010.
  • A. Chakraborty, S. Gopalakrishnan, and J. N. Reddy, “A new beam finite element for the analysis of functionally graded materials [J],” Int. J. Mech. Sci., vol. 45, no. 3, pp. 519–539, 2003. DOI: 10.1016/S0020-7403(03)00058-4.
  • D. S. Mashat et al., “Free vibration of FGM layered beams by various theories and finite elements[J],” Compos. Part B: Eng., vol. 59, pp. 269–278, 2014. DOI: 10.1016/j.compositesb.2013.12.008.
  • M. Filippi, E. Carrera, and A. M. Zenkour, “Static analyses of FGM beams by various theories and finite elements[J],” Compos. Part B: Eng., vol. 72, pp. 1–9, 2015. DOI: 10.1016/j.compositesb.2014.12.004.
  • M. Shakeri, M. Akhlaghi, and S. M. Hoseini, “Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder [J],” Compos. Struct., vol. 76, no. 1, pp. 174–181, 2006. DOI: 10.1016/j.compstruct.2006.06.022.
  • S. M. Hosseini, M. Akhlaghi, and M. Shakeri, “Dynamic response and radial wave propagation velocity in thick hollow cylinder made of functionally graded materials [J],” Eng. Comput., vol. 24, no. 3, pp. 288–303, 2007. DOI: 10.1108/02644400710735043.
  • M. Asgari, M. Akhlaghi, and S. M. Hosseini, “Dynamic analysis of two-dimensional functionally graded thick hollow cylinder with finite length under impact loading [J],” Acta Mech., vol. 208, no. 3–4, pp. 163–180, 2009. DOI: 10.1007/s00707-008-0133-4.
  • A. T. Patera, “A spectral element method for fluid dynamics: laminar flow in a channel expansion[J],” J. Comput. Phys., vol. 54, no. 3, pp. 468–488, 1984. DOI: 10.1016/0021-9991(84)90128-1.
  • P. Kudela, M. Krawczuk, and W. Ostachowicz, “Wave propagation modelling in 1D structures using spectral finite elements[J],” J. Sound Vibration., vol. 300, no. 1, pp. 88–100, 2007. DOI: 10.1016/j.jsv.2006.07.031.
  • W. M. Ostachowicz, “Damage detection of structures using spectral finite element method[J],” Comput. Struct., vol. 86, no. 3, pp. 454–462, 2008. DOI: 10.1016/j.compstruc.2007.02.004.
  • Y. Kim, S. Ha, and F. K. Chang, “Time-domain spectral element method for built-in piezoelectric-actuator-induced lamb wave propagation analysis [J],” AIAA J., vol. 46, no. 3, pp. 591–600, 2008. DOI: 10.2514/1.27046.
  • W. Ostachowicz et al., Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method [M]. John Wiley & Sons, New Delhi, India, 2011.
  • H. Peng, G. Meng, and F. Li, “Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection [J],” J. Sound Vibration., vol. 320, no. 4, pp. 942–954, 2009. DOI: 10.1016/j.jsv.2008.09.005.
  • G. Chen, L. Qian, and Q. Yin, “Dynamic analysis of a Timoshenko beam subjected to an accelerating mass using spectral element method,” Shock Vibration, vol. 2014, 2014. DOI:10.1155/2014/768209.
  • C. S. Rekatsinas et al., “A time-domain high-order spectral finite element for the simulation of symmetric and anti-symmetric guided waves in laminated composite strips [J],” Wave Motion., vol. 53, pp. 1–19, 2015. DOI: 10.1016/j.wavemoti.2014.11.001.
  • N. Nanda and S. Kapuria, “Spectral finite element for wave propagation analysis of laminated composite curved beams using classical and first order shear deformation theories [J],” Compos. Struct., vol. 132, pp. 310–320, 2015. DOI: 10.1016/j.compstruct.2015.04.061.
  • S. Hedayatrasa et al., “Numerical modeling of wave propagation in functionally graded materials using time-domain spectral Chebyshev elements [J],” J. Comput. Phys., vol. 258, pp. 381–404, 2014. DOI: 10.1016/j.jcp.2013.10.037.
  • P. Kudela, “Parallel implementation of spectral element method for Lamb wave propagation modeling[J],” Int. J. Numer. Methods Eng., vol. 106, no. 6, pp. 413–429, 2016. DOI: 10.1002/nme.5119.
  • B. R. Sekhar, S. Gopalakrishnan, and M. Murthy, “Time domain spectral element method to study response of a sandwich beam with compliant core subjected to under water explosion [J],” Procedia Eng., vol. 173, pp. 1515–1522, 2017. DOI: 10.1016/j.proeng.2016.12.234.
  • M. Nemat-Alla, “Reduction of thermal stresses by developing two-dimensional functionally graded materials [J],” Int. J. Solids Struct., vol. 40, no. 26, pp. 7339–7356, 2003. DOI: 10.1016/j.ijsolstr.2003.08.017.
  • B. S. Aragh and H. Hedayati, “Static response and free vibration of two-dimensional functionally graded metal/ceramic open cylindrical shells under various boundary conditions [J],” Acta Mech., vol. 223, no. 2, pp. 309–330, 2012. DOI:10.1007/s00707-011-0563-2.
  • M. J. Ebrahimi and M. M. Najafizadeh, “Free vibration analysis of two-dimensional functionally graded cylindrical shells [J],” Appl. Math. Modell., vol. 38, no. 1, pp. 308–324, 2014. DOI: 10.1016/j.apm.2013.06.015.
  • H. Zafarmand and B. Hassani, “Analysis of two-dimensional functionally graded rotating thick disks with variable thickness [J],” Acta Mech., vol. 225, no. 2, pp. 453, 2014. DOI: 10.1007/s00707-013-0966-3.
  • A. Żak and M. Krawczuk, “Certain numerical issues of wave propagation modelling in rods by the Spectral Finite Element Method [J],” Finite Elem. Anal. Des., vol. 47, no. 9, pp. 1036–1046, 2011. DOI: 10.1016/j.finel.2011.03.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.