168
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

A coupled FE-IGA technique for modeling fatigue crack growth in engineering materials

&
Pages 1764-1775 | Received 14 Jan 2018, Accepted 25 Feb 2018, Published online: 14 Mar 2018

References

  • S. Cheung and A. R. Luxmoore, “A finite element analysis of stable crack growth in an aluminium alloy,” Eng. Fract. Mech., vol. 70, pp. 1153–1169, 2003. DOI: 10.1016/S0013-7944(02)00093-0.
  • A. Hillerborg, M. Modeer, and P. E. Petersson, “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements,” Cem. Concr. Res., vol. 6, pp. 773–781, 1976. DOI: 10.1016/0008-8846(76)90007-7.
  • N. Moes, J. Dolbow, and T. Belytschko, “A finite element method for crack growth without remeshing,” Int. J. Numer. Meth. Engng., vol. 46, pp. 131–150, 1999. DOI: 10.1002/(SICI)1097-0207(19990910)46:1%3c131::AID-NME726%3e3.0.CO;2-J.
  • T. Belytschko and T. Black, “Elastic crack growth in finite elements with minimal remeshing,” Int. J. Numer. Meth. Engng., vol. 45, pp. 601–620, 1999. DOI: 10.1002/(SICI)1097-0207(19990620)45:5%3c601::AID-NME598%3e3.0.CO;2-S.
  • C. Daux, N. Moes, J. Dolbow, N. Sukumar, and T. Belytschko, “Arbitrary branched and intersecting cracks with the extended finite element method,” Int. J. Numer. Meth. Engng., vol. 48, pp. 1741–1760, 2000. DOI: 10.1002/1097-0207(20000830)48:12%3c1741::AID-NME956%3e3.0.CO;2-L.
  • E. Bechet, H. Minnebo, N. Moes, and B. Burgardt, “Improved implementation and robustness study of the XFEM for stress analysis around cracks,” Int. J. Numer. Meth. Engng., vol. 64, pp. 1033–1056, 2005. DOI: 10.1002/nme.1386.
  • M. Pant, I. V. Singh, and B. K. Mishra, “Numerical simulation of thermo-elastic fracture problems using element free Galerkin method,” Int. J. Mech. Sci., vol. 52, pp. 1745–1755, 2010. DOI: 10.1016/j.ijmecsci.2010.09.008.
  • T. Belytschko, Y. Y. Lu, and L. Gu, “Crack propagation by element-free Galerkin methods,” Eng. Fract. Mech., vol. 51, pp. 295–315, 1995. DOI: 10.1016/0013-7944(94)00153-9.
  • D. Marc and N.-D. Hung, “A meshless method with enriched weight functions for fatigue crack growth,” Int. J. Numer. Meth. Engng., vol. 59, pp. 1945–1961, 2004. DOI: 10.1002/nme.948.
  • D. Marc and N.-D. Hung, “Fatigue crack growth analysis by an enriched meshless method,” J. Comput. Appl. Math., vol. 168, pp. 155–164, 2004. DOI: 10.1016/j.cam.2003.04.006.
  • A. M. Yan and H. Nguyen Dang, “Multiple-cracked fatigue crack growth by BEM,” Comput. Mech., vol. 16, pp. 273–280, 1995. DOI: 10.1007/BF00350716.
  • X. Yan, “A boundary element modeling of fatigue crack growth in a plane elastic plate,” Mech. Res. Commun., vol. 33, pp. 470–481, 2006. DOI: 10.1016/j.mechrescom.2005.06.006.
  • A. Portela, M. Aliabadi, and D. Rooke, “The dual boundary element method: Effective implementation for crack problem,” Int. J. Numer. Meth. Engng., vol. 33, pp. 1269–1287, 1991. DOI: 10.1002/nme.1620330611.
  • G. Bhardwaj, I. V. Singh, B. K. Mishra, and T. Q. Bui, “Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions,” Compos. Struct., vol. 126, pp. 347–359, 2015. DOI: 10.1016/j.compstruct.2015.02.066.
  • T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,” Comput. Methods Appl. Mech. Engng., vol. 194, pp. 4135–4195, 2005. DOI: 10.1016/j.cma.2004.10.008.
  • J. A. Cottrell, A. Reali, Y. Bazilevs, and T. J. R. Hughes, “Isogeometric analysis of structural vibrations,” Comput. Methods Appl. Mech. Engng., vol. 195, pp. 5257–5296, 2006. DOI: 10.1016/j.cma.2005.09.027.
  • Y. Bazilevs et al., “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows,” Comput. Methods Appl. Mech. Engng., vol. 197, pp. 173–201, 2007. DOI: 10.1016/j.cma.2007.07.016.
  • Y. J. Zhang, Y. Bazilevs, S. Goswami, C. L. Bajaj, and T. J. R. Hughes, “Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow,” Comput. Methods Appl. Mech. Engng., vol. 196, pp. 2943–2959, 2007. DOI: 10.1016/j.cma.2007.02.009.
  • T. J. R. Hughes, A. Reali, and G. Sangalli, “Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS,” Comput. Methods Appl. Mech. Engng., vol. 197, pp. 4104–4124, 2008. DOI: 10.1016/j.cma.2008.04.006.
  • A. Shaw and D. Roy, “NURBS- based parametric mesh-free methods,” Comput. Methods Appl. Mech. Engng., vol. 197, pp. 1541–1567, 2008. DOI: 10.1016/j.cma.2007.11.024.
  • J. Kiendl, Y. Bazilevs, M. C. Hsu, R. Wuchner, and K. U. Bletzinger, “The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches,” Comput. Methods Appl. Mech. Engng., vol. 199, pp. 2403–2416, 2010. DOI: 10.1016/j.cma.2010.03.029.
  • W. A. Wall, M. A. Frenzel, and C. Cyron, “Isogeometric structural shape optimization,” Comput. Methods Appl. Mech. Engng., vol. 197, pp. 2976–2988, 2008. DOI: 10.1016/j.cma.2008.01.025.
  • A. P. Nagy, M. M. Abdalla, and Z. Gurdal, “Isogeometric sizing and shape optimization of beam structures,” Comput. Methods Appl. Mech. Engng., vol. 199, pp. 1216–1230, 2010. DOI: 10.1016/j.cma.2009.12.010.
  • A. P. Nagy, M. M. Abdalla, and Z. Gurdal, “On the variational formulation of stress constraints in isogeometric design,” Comput. Methods Appl. Mech. Engng., vol. 199, pp. 2687–2696, 2010. DOI: 10.1016/j.cma.2010.05.012.
  • Y. D. Seo, H. J. Kim, and S. K. Youn, “Shape optimization and its extension to topological design based on isogeometric analysis,” Int. J. Solids Struct., vol. 47, pp. 1618–1640, 2010. DOI: 10.1016/j.ijsolstr.2010.03.004.
  • X. Qian, “Full analytical sensitivities in NURBS based isogeometric shape optimization,” Comput. Methods Appl. Mech. Engng., vol. 199, pp. 2059–2071, 2010. DOI: 10.1016/j.cma.2010.03.005.
  • S. Shojaee, N. Valizadeh, E. Izadpanah, T. Bui, and T. V. Vu, “Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method,” Compos. Struct., vol. 94, pp. 1677–1693, 2012. DOI: 10.1016/j.compstruct.2012.01.012.
  • D. J. Benson et al., “A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM,” Int. J. Numer. Meth. Engng., vol. 83, pp. 765–785, 2010.
  • C. H. Thai, A. J. M. Ferreira, E. Carrera, and H. N. Xuan, “Isogeometric analysis of laminated composite and sandwich plates using a layer wise deformation theory,” Compos. Struct., vol. 104, pp. 196–214, 2013. DOI: 10.1016/j.compstruct.2013.04.002.
  • G. Bhardwaj, I. V. Singh, and B. K. Mishra, “Fatigue crack growth in functionally graded material using homogenized XIGA,” Compos. Struct., vol. 134, pp. 269–284, 2015. DOI: 10.1016/j.compstruct.2015.08.065.
  • P. S. Larsen, “A comparison of accuracy and computational efficiency between the finite element method and the isogeometric analysis for two dimensional poisson problems,” Master of Science in Physics and Mathematics Thesis, Norway: Norwegian University of Science and Technology, 2009.
  • J. M. Melenk and I. Babuska, “The partition of unity finite element method: Basic theory and applications,” Comput. Methods Appl. Mech. Engng., vol. 199, pp. 289–314, 1996. DOI: 10.1016/S0045-7825(96)01087-0.
  • I. V. Singh, G. Bhardwaj, and B. K. Mishra, “A new criterion for modeling multiple discontinuities passing through an element using XIGA,” J. Mech. Sci. Tech., vol. 29, pp. 1131–1143, 2015. DOI: 10.1007/s12206-015-0225-8.
  • G. Bhardwaj, I. V. Singh, B. K. Mishra, and V. Kumar, “Numerical simulations of cracked plate using XIGA under different loads and boundary conditions,” Mech. Adv. Mater. Struct., vol. 23, pp. 704–714, 2016. DOI: 10.1080/15376494.2015.1029159.
  • E. De Luycker, D. J. Benson, T. Belytschko, Y. Bazilevs, and M. C. Hsu, “X-FEM in isogeometric analysis for linear fracture mechanics,” Int. J. Numer. Meth. Engng., vol. 87, pp. 541–565, 2011. DOI: 10.1002/nme.3121.
  • S. S. Ghorashi, N. Valizadeh, and S. Mohammadi, “Extended isogeometric analysis for simulation of stationary and propagating cracks,” Int. J. Numer. Meth. Engng., vol. 89, pp. 1069–1101, 2011. DOI: 10.1002/nme.3277.
  • G. Bhardwaj, I. V. Singh, and B. K. Mishra, “Numerical simulation of plane crack problems using extended isogeometric analysis,” Procedia Engng., vol. 64, pp. 661–670, 2013. DOI: 10.1016/j.proeng.2013.09.141.
  • G. Bhardwaj, I. V. Singh, B. K. Mishra, and T. Rabczuk, “Fatigue crack growth analysis of an interfacial crack in heterogeneous materials using homogenized XIGA,” Theor. Appl. Fract. Mech., vol. 85, pp. 294–319, 2016. DOI: 10.1016/j.tafmec.2016.04.004.
  • G. Haasemann, M. Kastner, S. Pruger, and V. Ulbricht, “Development of a quadratic finite element formulation based on the XFEM and NURBS,” Int. J. Numer. Meth. Engng., vol. 86, pp. 598–617, 2011. DOI: 10.1002/nme.3120.
  • A. Jameel and G. A. Harmain, “Modeling and numerical simulation of fatigue crack growth in cracked specimens containing material discontinuities,” Strength Mater., vol. 48, pp. 294–307, 2016. DOI: 10.1007/s11223-016-9765-0.
  • A. Jameel and G. A. Harmain, “Fatigue crack growth in presence of material discontinuities by EFGM,” Int. J. Fatigue, vol. 81, pp. 105–116, 2015. DOI: 10.1016/j.ijfatigue.2015.07.021.
  • S. K. Singh, I. V. Singh, B. K. Mishra, G. Bhardwaj, and T. Q. Bui, “A simple, efficient and accurate Bézier extraction based T-spline XIGA for crack simulations,” Theor. Appl. Fract. Mech., vol. 88, pp. 74–96, 2017. DOI: 10.1016/j.tafmec.2016.12.002.
  • T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, 2nd ed. CRC Press, 1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.