338
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Free vibration analysis of elastically restrained functionally graded curved beams based on the Mori–Tanaka scheme

&
Pages 1821-1831 | Received 17 Dec 2017, Accepted 03 Mar 2018, Published online: 02 Apr 2018

References

  • Y. Fukui, “Fundamental investigation of functionally gradient material manufacturing system using centrifugal force,” JSME International Journal. Ser. 3, Vibration, Control Engineering, Engineering For Industry., vol. 34, pp. 144–148, 1991. doi:10.1299/jsmec1988.34.144.
  • M. Koizumi, “FGM activities in Japan,” Compos. Part B-Eng., vol. 28, pp. 1–4, 1997. doi:10.1016/S1359-8368(96)00016-9.
  • J. Reddy, “Analysis of functionally graded plates,” Int. J. Numer. Meth. Eng., vol. 47, pp. 663–684, 2000. doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
  • S. Suresh and A. Mortensen, Fundamentals of Functionally Graded Materials. The Institute of Materials, London, 1998.
  • R. Hill, “A self-consistent mechanics of composite materials,” Journal of the Mechanics and Physics of Solids., vol. 13 213–222, 1965. doi:10.1016/0022-5096(65)90010-4.
  • Y. Benveniste, “A new approach to the application of Mori-Tanaka's theory in composite materials,” Mech. Mater., vol. 6, pp. 147–157, 1987. doi:10.1016/0167-6636(87)90005-6.
  • T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., vol. 21, pp. 571–574, 1973 doi:10.1016/0001-6160(73)90064-3.
  • J. Aboudi, M.-J. Pindera, and S. M. Arnold, “Higher-order theory for functionally graded materials,” Compos. Part B-Eng., vol. 30, pp. 777–832, 1999. doi:10.1016/S1359-8368(99)00053-0.
  • S. S. Vel and R. Batra, “Three-dimensional exact solution for the vibration of functionally graded rectangular plates,” J. Sound Vibrat., vol. 272, pp. 703–730, 2004. doi:10.1016/S0022-460X(03)00412-7.
  • V. Tahouneh, “Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method,” Struct. Eng. Mech., vol. 52, pp. 663–686, 2014. doi:10.12989/sem.2014.52.4.663.
  • V. Tahouneh, “Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates,” Steel and Composite Structures., vol. 20, pp. 623–649, 2016. doi:10.12989/scs.2016.20.3.623.
  • V. Tahouneh and M. H. Naei, “3D free vibration analysis of elastically supported thick nanocomposite curved panels with finite length and different boundary conditions via 2D GDQ method,” Mechanics of Advanced Materials and Structures., vol. 23, pp. 1216–1235, 2016. doi:10.1080/15376494.2015.1068402.
  • V. Tahouneh and M. H. Naei, “The effect of multi-directional nanocomposite materials on the vibrational response of thick shell panels with finite length and rested on two-parameter elastic foundations,” International Journal of Advanced Structural Engineering (IJASE)., vol. 8, pp. 11–28, 2016. doi:10.1007/s40091-016-0110-4.
  • V. Tahouneh and M. H. Naei, “Using Eshelby–Mori–Tanaka scheme for 3D free vibration analysis of sandwich curved panels with functionally graded nanocomposite face sheets and finite length,” Polym. Compos., vol. 38, pp. E563–E576, 2017. DOI:10.1002/pc.23929.
  • V. Tahouneh and M. Yas, “Influence of equivalent continuum model based on the Eshelby–Mori–Tanaka scheme on the vibrational response of elastically supported thick continuously graded carbon nanotube-reinforced annular plates,” Polym. Compos., vol. 35, pp. 1644–1661, 2014. doi:10.1002/pc.22818.
  • Q. Wang, X. Cui, B. Qin, Q. Liang, and J. Tang, “A semi-analytical method for vibration analysis of functionally graded (FG) sandwich doubly-curved panels and shells of revolution,” International Journal of Mechanical Sciences., vol. 134, pp. 479–499, 2017. doi:10.1016/j.ijmecsci.2017.10.036.
  • Q. Wang, D. Shi, Q. Liang, and F. Pang, “A unified solution for vibration analysis of moderately thick functionally graded rectangular plates with general boundary restraints and internal line supports,” Mechanics of Advanced Materials and Structures., vol. 24, pp. 943–961, 2017. doi:10.1080/15376494.2016.1196797.
  • Q. Wang, D. Shi, Q. Liang, and X. Shi, “A unified solution for vibration analysis of functionally graded circular, annular and sector plates with general boundary conditions,” Compos. Part B-Eng., vol. 88, pp. 264–294, 2016. doi:10.1016/j.compositesb.2015.10.043.
  • B. V. Sankar, “An elasticity solution for functionally graded beams,” Compos. Sci. Technol., vol. 61, pp. 689–696, 2001. doi:10.1016/S0266-3538(01)00007-0.
  • M. Şimşek and T. Kocatürk, “Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load,” Compos. Struct., vol. 90, pp. 465–473, 2009. doi:10.1016/j.compstruct.2009.04.024.
  • X.-F. Li, “A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams,” J. Sound Vibrat., vol. 318, pp. 1210–1229, 2008. doi:10.1016/j.jsv.2008.04.056.
  • Z.-Q. Cheng and R. Batra, “Three-dimensional thermoelastic deformations of a functionally graded elliptic plate,” Compos. Part B-Eng., vol. 31, pp. 97–106, 2000. doi:10.1016/S1359-8368(99)00069-4.
  • J. Yang, S. Kitipornchai, and K. Liew, “Large amplitude vibration of thermo-electro-mechanically stressed FGM laminated plates,” Comput. Meth. Appl. Mech. Eng., vol. 192, pp. 3861–3885, 2003. doi:10.1016/S0045-7825(03)00387-6.
  • F. Tornabene, “Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution,” Comput. Meth. Appl. Mech. Eng., vol. 198, pp. 2911–2935, 2009. doi:10.1016/j.cma.2009.04.011.
  • F. Tornabene, E. Viola, and D. J. Inman, “2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures,” J. Sound Vibrat., vol. 328, pp. 259–290. doi:10.1016/j.jsv.2009.07.031.
  • M. Hajianmaleki and M. S. Qatu, “Vibrations of straight and curved composite beams: A review,” Compos. Struct., vol. 100, pp. 218–232, 2013. doi:10.1016/j.compstruct.2013.01.001.
  • R.-A. Jafari-Talookolaei, M. Abedi, and M. Hajianmaleki, “Vibration characteristics of generally laminated composite curved beams with single through-the-width delamination,” Compos. Struct., vol. 138, pp. 172–183, 2016. doi:10.1016/j.compstruct.2015.11.050.
  • D. Shao, S. Hu, Q. Wang, and F. Pang, “A unified analysis for the transient response of composite laminated curved beam with arbitrary lamination schemes and general boundary restraints,” Compos. Struct., vol. 154, pp. 507–526, 2016. doi:10.1016/j.compstruct.2016.07.070.
  • D. Shao, F. Hu, Q. Wang, F. Pang, and S. Hu, “Transient response analysis of cross-ply composite laminated rectangular plates with general boundary restraints by the method of reverberation ray matrix,” Compos. Struct., vol. 152, pp. 168–182. doi:10.1016/j.compstruct.2016.05.035.
  • D. Shao, S. Hu, Q. Wang, and F. Pang, “Free vibration of refined higher-order shear deformation composite laminated beams with general boundary conditions,” Compos. Part B-Eng., vol. 108, 75–90, 2017. doi:10.1016/j.compositesb.2016.09.093.
  • D. Shao, S. Hu, Q. Wang, and F. Pang, “An enhanced reverberation-ray matrix approach for transient response analysis of composite laminated shallow shells with general boundary conditions,” Compos. Struct., vol. 162, pp. 133–155, 2017. doi:10.1016/j.compstruct.2016.11.085.
  • C. P. Filipich and M. T. Piovan, “The dynamics of thick curved beams constructed with functionally graded materials,” Mechanics Research Communications., vol. 37, pp. 565–570, 2010. doi:10.1016/j.mechrescom.2010.07.007.
  • C.-N. Chen, “DQEM analysis of in-plane vibration of curved beam structures,” Adv. Eng. Software., vol. 36, pp. 412–424, 2005. doi:10.1016/j.advengsoft.2004.12.006.
  • B. K. Lee, S. J. Oh, J. M. Mo, and T. E. Lee, “Out-of-plane free vibrations of curved beams with variable curvature,” J. Sound Vibrat., vol. 318, pp. 227–246, 2008. doi:10.1016/j.jsv.2008.04.015.
  • A. Yousefi and A. Rastgoo, “Free vibration of functionally graded spatial curved beams,” Compos. Struct., vol. 93, pp. 3048–3056, 2011. doi:10.1016/j.compstruct.2011.04.024.
  • Z. Shi, X. Yao, F. Pang, and Q. Wang, “An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions,” Scientific Reports., vol. 7, 12909, 2017. doi:10.1038/s41598-017-12596-w.
  • Z. Shi, X. Yao, F. Pang, and Q. Wang, “A semi-analytical solution for in-plane free vibration analysis of functionally graded carbon nanotube reinforced composite circular arches with elastic restraints,” Compos. Struct., vol. 182, pp. 420–434, 2017. doi:10.1016/j.compstruct.2017.09.045.
  • W. L. Li, “Free vibrations of beams with general boundary conditions,” J. Sound Vibrat., vol. 237, pp. 709–725. doi:10.1006/jsvi.2000.3150.
  • D. Shi, Q. Liang, Q. Wang, and X. Teng, “A unified solution for free vibration of orthotropic circular, annular and sector plates with general boundary conditions,” Journal of Vibroengineering., vol. 18, pp. 3138–3152, 2016. DOI:10.21595/jve.2016.17004.
  • D. Shi, X. Lv, Q. Wang, and Q. Liang, “A unified solution for free vibration of orthotropic annular sector thin plates with general boundary conditions, internal radial line and circumferential arc supports,” Journal of Vibroengineering., vol. 18, pp. 361–377, 2016.
  • D. Shi, Q. Wang, X. Shi, and F. Pang, “An accurate solution method for the vibration analysis of Timoshenko beams with general elastic supports,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science., vol. 229, pp. 2327–2340, 2015.
  • D. Shi, Q. Wang, X. Shi, and F. Pang, “A series solution for the in-plane vibration analysis of orthotropic rectangular plates with non-uniform elastic boundary constraints and internal line supports,” Arch. Appl. Mech., vol. 85, pp. 51–73, 2015. doi:10.1007/s00419-014-0899-x.
  • D. Shi, Y. Zhao, Q. Wang, X. Teng, and F. Pang, “A unified spectro-geometric-Ritz method for vibration analysis of open and closed shells with arbitrary boundary conditions,” Shock Vibrat., vol. 2016, pp. 1–30, 2016. DOI:10.1155/2016/4097123.
  • Q. Wang, K. Choe, D. Shi, and K. Sin, “Vibration analysis of the coupled doubly-curved revolution shell structures by using Jacobi-Ritz method,” International Journal of Mechanical Sciences., vol. 135, pp. 517–531, 2018. doi:10.1016/j.ijmecsci.2017.12.002.
  • Q. Wang, D. Shi, F. Pang, and F. E Ahad, “Benchmark solution for free vibration of thick open cylindrical shells on Pasternak foundation with general boundary conditions,” Meccanica., vol. 52, pp. 457–482, 2017. doi:10.1007/s11012-016-0406-2.
  • Q. Wang, D. Shi, and X. Shi, “A modified solution for the free vibration analysis of moderately thick orthotropic rectangular plates with general boundary conditions, internal line supports and resting on elastic foundation,” Meccanica., vol. 51, pp. 1985–2017, 2016. DOI:10.1007/s11012-015-0345-3.
  • Y. Zhou, Q. Wang, D. Shi, Q. Liang, and Z. Zhang, “Exact solutions for the free in-plane vibrations of rectangular plates with arbitrary boundary conditions,” International Journal of Mechanical Sciences., vol. 130, pp. 1–10, 2017. doi:10.1016/j.ijmecsci.2017.06.004.
  • Q. Wang, D. Shi, Q. Liang, and F. Pang, “Free vibration of four-parameter functionally graded moderately thick doubly-curved panels and shells of revolution with general boundary conditions,” Appl. Math. Model., vol. 42, pp. 705–734, 2017. DOI:10.1016/j.apm.2016.10.047.
  • Q. Wang, F. Pang, B. Qin, and Q. Liang, “A unified formulation for free vibration of functionally graded carbon nanotube reinforced composite spherical panels and shells of revolution with general elastic restraints by means of the Rayleigh–Ritz method,” Polym. Compos., 2017.
  • Q. Wang, B. Qin, D. Shi, and Q. Liang, “A semi-analytical method for vibration analysis of functionally graded carbon nanotube reinforced composite doubly-curved panels and shells of revolution,” Compos. Struct., vol. 174, pp. 87–109, 2017. doi:10.1016/j.compstruct.2017.04.038.
  • Q. Wang, D. Shao, and B. Qin, “A simple first-order shear deformation shell theory for vibration analysis of composite laminated open cylindrical shells with general boundary conditions,” Compos. Struct., vol. 184, pp. 211–232, 2018. doi:10.1016/j.compstruct.2017.09.070.
  • Q. Wang, D. Shi, and Q. Liang, “Free vibration analysis of axially loaded laminated composite beams with general boundary conditions by using a modified Fourier–Ritz approach,” J. Compos. Mater., vol. 50, pp. 2111–2135, 2016. doi:10.1177/0021998315602138.
  • Q. Wang, D. Shi, Q. Liang, and F. Ahad, “An improved Fourier series solution for the dynamic analysis of laminated composite annular, circular, and sector plate with general boundary conditions,” J. Compos. Mater., vol. 50, pp. 4199–4233, 2016. doi:10.1177/0021998316635240.
  • Q. Wang, D. Shi, Q. Liang, and F. Pang, “Free vibrations of composite laminated doubly-curved shells and panels of revolution with general elastic restraints,” Appl. Math. Model., vol. 46, pp. 227–262, 2017. doi:10.1016/j.apm.2017.01.070.
  • Q. Wang, D. Shi, F. Pang, and Q. Liang, “Vibrations of composite laminated circular panels and shells of revolution with general elastic boundary conditions via Fourier–Ritz method,” Curved and Layered Structures, vol. 3, pp. 105–136, 2016. doi:10.1515/cls-2016-0010.
  • H. Zhang, D. Shi, and Q. Wang, “An improved Fourier series solution for free vibration analysis of the moderately thick laminated composite rectangular plate with non-uniform boundary conditions,” International Journal of Mechanical Sciences, vol. 121, pp. 1–20, 2017. doi:10.1016/j.ijmecsci.2016.12.007.
  • H. Zhang, D. Shi, Q. Wang, and B. Qin, “Free vibration of functionally graded parabolic and circular panels with general boundary conditions,” Curved and Layered Structures, vol. 4, pp. 52–84, 2017. doi:10.1515/cls-2017-0006.
  • U. Eroglu, “In-plane free vibrations of circular beams made of functionally graded material in thermal environment: Beam theory approach,” Compos. Struct., vol. 122, pp. 217–228, 2015. doi:10.1016/j.compstruct.2014.11.051.
  • P. Malekzadeh, “Two-dimensional in-plane free vibrations of functionally graded circular arches with temperature-dependent properties,” Compos. Struct., vol. 91, pp. 38–47. doi:10.1016/j.compstruct.2009.04.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.