370
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Multi-stage micromechanical modeling of effective elastic properties of carbon fiber/carbon nanotube-reinforced polymer hybrid composites

, &
Pages 2047-2061 | Received 25 Jan 2018, Accepted 23 Mar 2018, Published online: 21 May 2018

References

  • S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56, 1991. DOI: 10.1038/354056a0.
  • N. J. Ginga, W. Chen, and S. K. Sitaraman, “Waviness reduces effective modulus of carbon nanotube forests by several orders of magnitude,” Carbon, vol. 66, pp. 57–66, 2014. DOI: 10.1016/j.carbon.2013.08.042.
  • L. L. Ke, J. Yang, and S. Kitipornchai, “Dynamic stability of functionally graded carbon nanotube-reinforced composite beams,” Mech. Adv. Mater. Struct., vol. 20, no. 1, pp. 28–37, 2013. DOI: 10.1080/15376494.2011.581412.
  • P. Laborde-Lahoz et al., “Mechanical characterization of carbon nanotube composite materials,” Mech. Adv. Mater. Struct., vol. 12, no. 1, pp. 13–19, 2005. DOI: 10.1080/15376490590491792.
  • T. W. Ebbesen et al., “Electrical conductivity of individual carbon nanotubes,” Nature, vol. 382, no. 6586, pp. 54–56, 1996. DOI: 10.1038/382054a0.
  • Q. Xu, Y. Yao, J. Y. Liang, and Z. H. Xia, “Interfacial energy and friction between carbon nanotubes and polymer matrix,” Mech. Adv. Mater. Struct., vol. 21, no. 5, pp. 393–401, 2014. DOI: 10.1080/15376494.2012.697601.
  • S. Namilae, J. Li, and S. Chava, “Improved piezoresistivity and damage detection application of hybrid carbon nanotube sheet-graphite platelet nanocomposites,” Mech. Adv. Mater. Struct., pp. 1–9, 2018. DOI: 10.1080/15376494.2018.1432812.
  • J. Sethi et al., “The effect of multi-wall carbon nanotube morphology on electrical and mechanical properties of polyurethane nanocomposites,” Compos. Part A: Appl. Sci. Manuf., vol. 102, pp. 305–313, 2017. DOI: 10.1016/j.compositesa.2017.08.014.
  • K. Li, X. L. Gao, and A. K. Roy, “Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites,” Mech. Adv. Mater. Struct., vol. 13, no. 4, pp. 317–328, 2006. DOI: 10.1080/15376490600583931.
  • L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, “Load transfer in carbon nanotube epoxy composites,” Appl. Phy. Lett., vol. 73, no. 26, pp. 3842–3844, 1998. DOI: 10.1063/1.122911.
  • D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Appl. Phys. Lett., vol. 76, no. 20, pp. 2868–2870, 2000. DOI: 10.1063/1.126500.
  • C. Rong et al., “Effect of carbon nanotubes on the mechanical properties and crystallization behavior of poly (ether ether ketone),” Compos. Sci. Technol., vol. 70, no. 2, pp. 380–386, 2010. DOI: 10.1016/j.compscitech.2009.11.024.
  • A. Montazeri, J. Javadpour, A. Khavandi, A. Tcharkhtchi, and A. Mohajeri, “Mechanical properties of multi-walled carbon nanotube/epoxy composites,” Mater. Des., vol. 31, no. 9, pp. 4202–4208, 2010. DOI: 10.1016/j.matdes.2010.04.018.
  • A. Watters, J. Cuadra, A. Kontsos, and G. Palmese, “Processing-structure–property relationships of SWNT–epoxy composites prepared using ionic liquids,” Compos. Part A: Appl. Sci. Manuf., vol. 73, pp. 269–276, 2015. DOI: 10.1016/j.compositesa.2015.03.019.
  • G. D. Seidel and D. C. Lagoudas, “Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites,” Mech. Mater., vol. 38, no. 8, pp. 884–907, 2006. DOI: 10.1016/j.mechmat.2005.06.029.
  • A. Pantano and F. Cappello, “Numerical model for composite material with polymer matrix reinforced by carbon nanotubes,” Meccanica, vol. 43, no. 2, pp. 263–270, 2008. DOI: 10.1007/s11012-008-9121-y.
  • J. L. Tsai, S. H. Tzeng, and Y. T. Chiu, “Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation,” Compos. Part B: Eng., vol. 41, no. 1, pp. 106–115, 2010. DOI: 10.1016/j.compositesb.2009.06.003.
  • R. Rafiee, “Influence of carbon nanotube waviness on the stiffness reduction of CNT/polymer composites,” Composite Structures, vol. 97, pp. 304–309, 2013. DOI: 10.1016/j.compstruct.2012.10.028.
  • K. Yanase, S. Moriyama, and J. W. Ju, “Effects of CNT waviness on the effective elastic responses of CNT-reinforced polymer composites,” Acta Mechanica, vol. 224, no. 7, pp. 1351, 2013. DOI: 10.1007/s00707-013-0808-3.
  • R. Ansari and M. K. Hassanzadeh-Aghdam, “Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites,” Int. J. Mech. Sci., vol. 115, pp. 45–55, 2016. DOI: 10.1016/j.ijmecsci.2016.06.005.
  • S. Feli, L. Karami, and S. S. Jafari, “Analytical modeling of low velocity impact on carbon nanotube-reinforced composite (CNTRC) plates,” Mech. Adv. Mater. Struct., pp. 1–13, 2017. DOI: 10.1080/15376494.2017.1400613.
  • D. C. Hammerand, G. D. Seidel, and D. C. Lagoudas, “Computational micromechanics of clustering and interphase effects in carbon nanotube composites,” Mech. Adv. Mater. Struct., vol. 14, no. 4, pp. 277–294, 2007. DOI: 10.1080/15376490600817370.
  • M. Omidi, H. R. DT, A. S. Milani, R. J. Seethaler, and R. Arasteh, “Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures,” Carbon, vol. 48, no. 11, pp. 3218–3228, 2010. DOI: 10.1016/j.carbon.2010.05.007.
  • M. Hasanzadeh, R. Ansari, and M. K. Hassanzadeh-Aghdam, “Micromechanical elastoplastic analysis of randomly oriented nonstraight carbon nanotube-reinforced polymer nanocomposites,” Mech. Adv. Mater. Struct., 2018. DOI: 10.1080/15376494.2018.1444227.
  • J. Pan, L. Bian, H. Zhao, and Y. Zhao, “A new micromechanics model and effective elastic modulus of nanotube reinforced composites,” Comput. Mater. Sci., vol. 113, pp. 21–26, 2016. DOI: 10.1016/j.commatsci.2015.11.009.
  • S. I. Yengejeh, S. A. Kazemi, and A. Öchsner, “Carbon nanotubes as reinforcement in composites: a review of the analytical, numerical and experimental approaches,” Comput. Mater. Sci., vol. 136, pp. 85–101, 2017. DOI: 10.1016/j.commatsci.2017.04.023.
  • M. A. Fonseca et al., “Shape memory polyurethanes reinforced with carbon nanotubes,” Compos. Struct., vol. 99, pp. 105–111, 2013. DOI: 10.1016/j.compstruct.2012.11.029.
  • J. N. Dastgerdi, G. Marquis, and M. Salimi, “The effect of nanotubes waviness on mechanical properties of CNT/SMP composites,” Compos. Sci. Technol., vol. 86, pp. 164–169, 2013. DOI: 10.1016/j.compscitech.2013.07.012.
  • A. Alva, A. Bhagat, and S. Raja, “Effective moduli evaluation of carbon nanotube reinforced polymers using micromechanics,” Mech. Adv. Mater. Struct., vol. 22, no. 10, pp. 819–828, 2015. DOI: 10.1080/15376494.2013.864434.
  • J. F. Wang and K. M. Liew, “On the study of elastic properties of CNT-reinforced composites based on element-free MLS method with nanoscale cylindrical representative volume element,” Compos. Struct., vol. 124, pp. 1–9, 2015. DOI: 10.1016/j.compstruct.2015.01.006.
  • R. Ansari and M. K. Hassanzadeh-Aghdam, “Micromechanical characterizing elastic, thermoelastic and viscoelastic properties of functionally graded carbon nanotube reinforced polymer nanocomposites,” Meccanica, vol. 52, no. 7, pp. 1625–1640, 2017. DOI: 10.1007/s11012-016-0512-1.
  • O. T. Topac, B. Gozluklu, E. Gurses, and D. Coker, “Experimental and computational study of the damage process in CFRP composite beams under low-velocity impact,” Compos. Part A: Appl. Sci. Manuf., vol. 92, pp. 167–182, 2017. DOI: 10.1016/j.compositesa.2016.06.023.
  • J. Bonhomme, J. Viña, A. Argüelles, I. Viña, and V. Mollón, “Influence of the matrix toughness in carbon-epoxy composites subjected to delamination under modes I, II, and mixed I/II,” Mech. Adv. Mater. Struct., vol. 20, no. 8, pp. 679–686, 2013. DOI: 10.1080/15376494.2012.667866.
  • M. H. Malakooti, and H. A. Sodano, “Multi-inclusion modeling of multiphase piezoelectric composites,” Compos. Part B: Eng., vol. 47, pp. 181–189, 2013. DOI: 10.1016/j.compositesb.2012.10.034.
  • R. L. Zhang et al., “Directly grafting graphene oxide onto carbon fiber and the effect on the mechanical properties of carbon fiber composites,” Mater. Des., vol. 93, pp. 364–369, 2016. DOI: 10.1016/j.matdes.2016.01.003.
  • D. Beicha et al., “Effective transverse elastic properties of unidirectional fiber reinforced composites,” Mech. Mater., vol. 102, pp. 47–53, 2016. DOI: 10.1016/j.mechmat.2016.08.010.
  • Y. J. Liu, N. Xu, and J. F. Luo, “Modeling of interphases in fiber-reinforced composites under transverse loading using the boundary element method,” J. Appl. Mech., vol. 67, no. 1, pp. 41–49, 2000. DOI: 10.1115/1.321150.
  • S. Aldajah and Y. Haik, “Transverse strength enhancement of carbon fiber reinforced polymer composites by means of magnetically aligned carbon nanotubes,” Mater. Des., vol. 34, pp. 379–383, 2012. DOI: 10.1016/j.matdes.2011.07.013.
  • Q. Li, J. S. Church, M. Naebe, and B. L. Fox, “A systematic investigation into a novel method for preparing carbon fibre–carbon nanotube hybrid structures,” Compos. Part A: Appl. Sci. Manuf., vol. 90, pp. 174–185, 2016. DOI: 10.1016/j.compositesa.2016.05.004.
  • Z. Eslami, F. Yazdani, and M. A. Mirzapour, “Thermal and mechanical properties of phenolic-based composites reinforced by carbon fibres and multiwall carbon nanotubes,” Compos. Part A: Appl. Sci. Manuf., vol. 72, pp. 22–31, 2015. DOI: 10.1016/j.compositesa.2015.01.015.
  • F. An et al., “Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite,” Mater. Des., vol. 33, pp. 197–202, 2012. DOI: 10.1016/j.matdes.2011.07.027.
  • S. Wang and J. Qiu, “Enhancing thermal conductivity of glass fiber/polymer composites through carbon nanotubes incorporation,” Compos. Part B: Eng., vol. 41, no. 7, pp. 533–536, 2010. DOI: 10.1016/j.compositesb.2010.07.002.
  • J. Li and L. Q. Zhang, “The addition of carbon nanotube on the tensile properties of carbon fiber-reinforced PEEK composites,” Polym.-Plast. Technol. Eng., vol. 48, no. 11, pp. 1176–1179, 2009. DOI: 10.1080/03602550903147346.
  • A. Swain, S. Baad, and T. Roy, “Modeling and analyses of thermo-elastic properties of radially grown carbon nanotubes-based woven fabric hybrid composite materials,” Mech. Adv. Mater. Struct., vol. 24, no. 14, pp. 1206–1220, 2017. DOI: 10.1080/15376494.2016.1227498.
  • M. R. Irshidat, M. H. Al-Saleh, and H. Almashagbeh, “Effect of carbon nanotubes on strengthening of RC beams retrofitted with carbon fiber/epoxy composites,” Mater. Des., vol. 89, pp. 225–234, 2016. DOI: 10.1016/j.matdes.2015.09.166.
  • S. Rahmanian, A. R. Suraya, M. A. Shazed, R. Zahari, and E. S. Zainudin, “Mechanical characterization of epoxy composite with multiscale reinforcements: carbon nanotubes and short carbon fibers,” Mater. Des., vol. 60, pp. 34–40, 2014. DOI: 10.1016/j.matdes.2014.03.039.
  • M. Kulkarni, D. Carnahan, K. Kulkarni, D. Qian, and J. L. Abot, “Elastic response of a carbon nanotube fiber reinforced polymeric composite: a numerical and experimental study,” Compos. Part B: Eng., vol. 41, no. 5, pp. 414–421, 2010. DOI: 10.1016/j.compositesb.2009.09.003.
  • S. I. Kundalwal and M. C. Ray, “Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method,” Eur. J. Mech.-A/Solids, vol. 36, pp. 191–203, 2012. DOI: 10.1016/j.euromechsol.2012.03.006.
  • S. I. Kundalwal and M. C. Ray, “Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes,” Mech. Mater., vol. 53, pp. 47–60, 2012. DOI: 10.1016/j.mechmat.2012.05.008.
  • S. I. Kundalwal and M. C. Ray, “Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite,” Compos. Part B: Eng., vol. 57, pp. 199–209, 2014. DOI: 10.1016/j.compositesb.2013.10.003.
  • S. Dhala and M. C. Ray, “Micromechanics of piezoelectric fuzzy fiber-reinforced composite,” Mech. Mater., vol. 81, pp. 1–17, 2015. DOI: 10.1016/j.mechmat.2014.10.004.
  • S. I. Kundalwal and M. C. Ray, “Estimation of thermal conductivities of a novel fuzzy fiber reinforced composite,” Int. J. Therm. Sci., vol. 76, pp. 90–100, 2014. DOI: 10.1016/j.ijthermalsci.2013.08.015.
  • G. Pal and S. Kumar, “Multiscale modeling of effective electrical conductivity of short carbon fiber-carbon nanotube-polymer matrix hybrid composites,” Mater. Des., vol. 89, pp. 129–136, 2016. DOI: 10.1016/j.matdes.2015.09.105.
  • Y. A. Kim et al., “Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes,” Appl. Phys. Lett., vol. 90, no. 9, pp. 093125, 2007. DOI: 10.1063/1.2710778.
  • M. T. Kim, K. Y. Rhee, J. H. Lee, D. Hui, and A. K. Lau, “Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes,” Compos. Part B: Eng., vol. 42, no. 5, pp. 1257–1261, 2011. DOI: 10.1016/j.compositesb.2011.02.005.
  • M. Sánchez, M. Campo, A. Jiménez-Suárez, and A. Ureña, “Effect of the carbon nanotube functionalization on flexural properties of multiscale carbon fiber/epoxy composites manufactured by VARIM,” Compos. Part B: Eng., vol. 45, no. 1, pp. 1613–1619, 2013. DOI: 10.1016/j.compositesb.2012.09.063.
  • M. M. Shokrieh, A. Daneshvar, and S. Akbari, “Reduction of thermal residual stresses of laminated polymer composites by addition of carbon nanotubes,” Mater. Des., vol. 53, pp. 209–216, 2014. DOI: 10.1016/j.matdes.2013.07.007.
  • M. Ahmadi, R. Ansari, and M. K. Hassanzadeh-Aghdam, “Low velocity impact analysis of beams made of short carbon fiber/carbon nanotube-polymer composite: A hierarchical finite element approach,” Mech. Adv. Mater. Struct., pp. 1–11, 2018.
  • I. Jasiuk and M. W. Kouider, “The effect of an inhomogeneous interphase on the elastic constants of transversely isotropic composites,” Mech. Mater., vol. 15, pp. 53–63, 1993. DOI: 10.1016/0167-6636(93)90078-6.
  • C. S. Chouchaoui and M. L. Benzeggagh, “The effect of interphase on the elastic behavior of a glass/epoxy bundle,” Compos. Sci. Technol., vol. 57, pp. 617–622, 1997. DOI: 10.1016/S0266-3538(96)00133-9.
  • S. Boutaleb et al., “Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites,” Int. J. Solids Struct., vol. 46, pp. 1716–1726, 2009. DOI: 10.1016/j.ijsolstr.2008.12.011.
  • Y. Zare, “Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly–Tyson theory,” Mech. Mater., vol. 85, pp. 1–6, 2015. DOI: 10.1016/j.mechmat.2015.02.002.
  • F. T. Fisher, R. D. Bradshaw, and L. C. Brinson, “Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties,” Compos. Sci. Technol., vol. 63, no. 11, pp. 1689–1703, 2003. DOI: 10.1016/S0266-3538(03)00069-1.
  • J. Qu and M. Cherkaoui, Fundamentals of Micromechanics of Solids. Wiley, New Jersey, 2006.
  • L. Shen and J. Li, “Transversely isotropic elastic properties of single-walled carbon nanotubes,” Phys. Rev. B, vol. 69, no. 4, pp. 045414, 2004. DOI: 10.1103/PhysRevB.69.045414.
  • Y. Pan et al., “Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites,” Mech. Mater., vol. 58, pp. 1–11, 2013. DOI: 10.1016/j.mechmat.2012.10.015.
  • P. Joshi and S. H. Upadhyay, “Effect of interphase on elastic behavior of multiwalled carbon nanotube reinforced composite,” Comput. Mater. Sci., vol. 87, pp. 267–273, 2014. DOI: 10.1016/j.commatsci.2014.02.029.
  • U. A. Joshi, S. C. Sharma, and S. P. Harsha, “Effect of carbon nanotube orientation on the mechanical properties of nanocomposites,” Compos. Part B: Eng., vol. 43, no. 4, pp. 2063–2071, 2012. DOI: 10.1016/j.compositesb.2012.01.063.
  • R. M. Haj-Ali and A. H. Muliana, “A multi-scale constitutive formulation for the nonlinear viscoelastic analysis of laminated composite materials and structures,” Int. J. Solids Struct., vol. 41, no. 13, pp. 3461–3490, 2004. DOI: 10.1016/j.ijsolstr.2004.02.008.
  • K. Honjo, “Thermal stresses and effective properties calculated for fiber composites using actual cylindrically-anisotropic properties of interfacial carbon coating,” Carbon, vol. 45, no. 4, pp. 865–872, 2007. DOI: 10.1016/j.carbon.2006.11.007.
  • H. Miyagawa et al., “Comparison of experimental and theoretical transverse elastic modulus of carbon fibers,” Carbon, vol. 44, no. 10, pp. 2002–2008, 2006. DOI: 10.1016/j.carbon.2006.01.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.