370
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Instability-induced wrinkling in thermoelectric thin film/substrate structures for thermal protection systems in supersonic space shuttle applications

, &
Pages 455-461 | Received 01 Apr 2018, Accepted 18 May 2018, Published online: 29 Jun 2018

References

  • S. Lineykin, and S. Ben-Yaakov, “Modeling and Analysis of Thermoelectric Modules,” IEEE Trans. Ind. Appl., vol. 43, no. 2, pp. 505–512, 2007. DOI: 10.1109/TIA.2006.889813.
  • J. H. Meng, X. D. Wang, and X. X. Zhang, “Transient modeling and dynamic characteristics of thermoelectric cooler,” Appl. Energy, vol. 10, pp. 340–348, 2013. DOI: 10.1016/j.apenergy.2013.03.051.
  • X. Y. Han, J. Wang, and H. F. Cheng, “Investigation of thermoelectric SiC ceramics for energy harvesting applications on supersonic vehicles leading–edges,” Bull. Mater. Sci., vol. 37, no. 1, pp. 127–132, 2014. DOI: 10.1007/s12034-014-0613-1.
  • R. C. O'Brien, R. M. Ambrosi, N. P. Bannister, S. D. Howe, and H. V. Atkinson, “Safe radioisotope thermoelectric generators and heat sources for space applications,” J. Nucl. Mater., vol. 377, no. 3, pp. 506–521, 2008. DOI: 10.1016/j.jnucmat.2008.04.009.
  • W. Li, C. Wei, L. Yuan, and J. Wang, “Simulation of micro spacecraft active temperature control system using thermalelectric cooler,” Chin. J. Mech. Eng., vol. 41, no. 10, pp. 149–152, 2005. DOI: 10.3901/JME.2005.10.149.
  • Q. H. Qin, “2D Green's functions of defective magnetoelectroelastic solids under thermal loading,” Eng. Anal. Boundary Elem., vol. 29, no. 6, pp. 577–585, 2005. DOI: 10.1016/j.enganabound.2004.11.002.
  • M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, “Application of fractional order theory of thermoelasticity to 3D time-dependent thermal shock problem for a half-space,” Mech. Adv. Mater. Struct., vol. 24, no. 1, pp. 27–35, 2017. DOI: 10.1080/15376494.2015.1091532.
  • H. P. Wu, L. Li, G. Z. Chai, F. Song, and T. Kitamura, “Three-dimensional thermal weight function method for the interface crack problems in bimaterial structures under a transient thermal loading,” J. Thermal Stresses, vol. 39, no. 4, pp. 371–385, 2016. DOI: 10.1080/01495739.2016.1152108.
  • H. Khazal, H. Bayesteh, S. Mohammadi, S. S. Ghorashi, and A. Ahmed, “An extended element free Galerkin method for fracture analysis of functionally graded materials,” Mech. Adv. Mater. Struct., vol. 23, no. 5, pp. 513–528, 2016. DOI: 10.1080/15376494.2014.984093.
  • Y. Qiu et al., “The enhanced piezoelectricity in compositionally graded ferroelectric thin films under electric field: a role of flexoelectric effect,” J. Appl. Phys., vol. 123, no. 8, pp. 084103, 2018. DOI: 10.1063/1.5019446.
  • Z. Zhang et al., “A novel thermo-mechanical anti-icing/de-icing system using bi-stable laminate composite structures with superhydrophobic surface,” Compos. Struct., vol. 180, pp. 933–943, 2017. DOI: 10.1016/j.compstruct.2017.08.068.
  • A. B. Zhang, and B. L. Wang, “Crack tip field in thermoelectric media,” Theor. Appl. Fract. Mech., vol. 66, pp. 33–36, 2013. DOI: 10.1016/j.tafmec.2013.11.006.
  • A. B. Zhang, and B. L. Wang, “Exact and explicit solutions of an elliptic hole or a crack problem in thermoelectric materials,” Eng. Fract. Mech., vol. 151, pp. 11–21, 2016. DOI: 10.1016/j.engfracmech.2015.11.013.
  • Y. Z. Wang, “Effective material properties of thermoelectric composites with elliptical fibers,” Appl. Phys. A, vol. 119, no. 3, pp. 1081–1085, 2015. DOI: 10.1007/s00339-015-9072-9.
  • H. P. Song, C. F. Gao, and J. Y. Li, “Two-dimensional problem of a crack in thermoelectric materials,” J. Thermal Stresses, vol. 38, no. 3, pp. 325–337, 2015. DOI: 10.1080/01495739.2015.1015369.
  • B. L. Wang, Y. B. Guo, and C. W. Zhang, “Cracking and thermal shock resistance of a Bi2Te3 based thermoelectric material,” Eng. Fract. Mech., vol. 152, pp. 1–9, 2016. DOI: 10.1016/j.engfracmech.2015.12.005.
  • A. B. Zhang, and B. L. Wang, “Temperature and electric potential fields of an interface crack in a layered thermoelectric or metal/thermoelectric material,” Int. J. Therm. Sci., vol. 104, pp. 396–403, 2016. DOI: 10.1016/j.ijthermalsci.2016.01.023.
  • P. Wang, and B. L. Wang, “Thermoelectric fields and associated thermal stresses for an inclined elliptic hole in thermoelectric materials,” Int. J. Eng. Sci., vol. 119, pp. 93–108, 2017. DOI: 10.1016/j.ijengsci.2017.06.018.
  • O. Q. Brooks, V. Rama, S. Edward, and C. Thomas, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature, vol. 413, no. 6856, pp. 597–602, 2001. DOI: 10.1038/35098012.
  • N. Neophytou, “Prospects of low-dimensional and nanostructured silicon-based thermoelectric materials: findings from theory and simulation,” Eur. Phys. J. B, vol. 88, no. 4, pp. 1–12, 2015. DOI: 10.1140/epjb/e2015-50673-9.
  • J. A. Kim, S. K. Lee, and S. G. Yoon, “Thermoelectric property of Fe3O4 thin films grown onto the SiO2 (250 nm)/Si and c-Al2O3 (0001) substrate at 573 K using pulsed laser deposition,” Sens. Actuators B, vol. 204, pp. 622–628, 2014. DOI: 10.1016/j.snb.2014.08.005.
  • J. M. Huang, P. K. Chou, and M. C. Lin, “An Investigation of the Thermal Stresses Induced in a Thin-Film Thermoelectric Cooler,” J. Thermal Stresses, vol. 31, no. 5, pp. 438–454, 2008. DOI: 10.1080/01495730801912512.
  • Z. H. Jin, “Buckling of thin film thermoelectrics,” Int. J. Fract., vol. 180, no. 1, pp. 129–136, 2013. DOI: 10.1007/s10704-012-9798-8.
  • Z. H. Jin, “Thermal stresses in a multilayered thin film thermoelectric structure,” Microelectron. Reliab., vol. 54, no. 6-7, pp. 1363–1368, 2014. DOI: 10.1016/j.microrel.2014.02.028.
  • Y. Liu, B. L. Wang, and C. Zhang, “Thermoelastic behavior of a thermoelectric thin-film attached to an infinite elastic substrate,” Philos. Mag., vol. 97, no. 1, pp. 43–57, 2017. DOI: 10.1080/14786435.2016.1243818.
  • B. L. Wang, and Y. J. Cui, “Transient interlaminar thermal stress in multi-layered thermoelectric materials,” Appl. Therm. Eng., vol. 119, pp. 207–214, 2017. DOI: 10.1016/j.applthermaleng.2017.03.047.
  • C. G. Wang, L. N. Mao, X. W. Du, and X. D. He, “Influence parameter analysis and wrinkling control of space membrane structures,” Mech. Adv. Mater. Struct., vol. 17, no. 1, pp. 49–59, 2009. DOI: 10.1080/15376490903082862.
  • S. Goyal, K. Srinivasan, G. Subbarayan, and T. Siegmund, “A non-contact, thermally-driven buckling delamination test to measure interfacial fracture toughness of thin film systems,” Thin Solid Films, vol. 518, no. 8, pp. 2056–2064, 2010. DOI: 10.1016/j.tsf.2009.07.148.
  • H. X. Mei, C. M. Landis, and R. Huang, “Concomitant wrinkling and buckle-delamination of elastic thin films on compliant substrates,” Mech. Mater., vol. 43, no. 11, pp. 627–642, 2011. DOI: 10.1016/j.mechmat.2011.08.003.
  • S. Goyal, K. Srinivasan, G. Subbarayan, and T. Siegmund, “On instability-induced debond initiation in thin film systems,” Eng. Fract. Mech., vol. 77, no. 8, pp. 1298–1313, 2010. DOI: 10.1016/j.engfracmech.2010.02.001.
  • Z. Y. Huang, W. Hong, and Z. Suo, “Nonlinear analyses of wrinkles in a film bonded to a compliant substrate,” J. Mech. Phys. Solids, vol. 53, no. 9, pp. 2101–2118, 2005. DOI: 10.1016/j.jmps.2005.03.007.
  • S. S. Pandurangi, and S. S. Kulkarni, “Mechanics of wrinkling of a thin film bonded to a compliant substrate under the influence of spatial thermal modulation,” Int. J. Solids Struct., vol. 62, pp. 124–133, 2015. DOI: 10.1016/j.ijsolstr.2015.02.019.
  • Y. P. Cao, and J. W. Hutchinson, “Wrinkling phenomena in neo-hookean film/substrate bilayers,” J. Appl. Mech., vol. 79, no. 3, pp. 031019, 2012. DOI: 10.1115/1.4005960.
  • C. Zhang, B. Li, X. Huang, Y. Ni, and X. Q. Feng, “Morphomechanics of bacterial biofilms undergoing anisotropic differential growth,” Appl. Phys. Lett., vol. 109, no. 14, pp. 143701, 2016. DOI: 10.1063/1.4963780.
  • B. Li, Y. P. Cao, X. Q. Feng, and H. Gao, “Mechanics of morphological instabilities and surface wrinkling in soft materials: a review,” Soft Matter, vol. 8, no. 21, pp. 5728–5745, 2012. DOI: 10.1039/c2sm00011c.
  • P. Bella, and R. V. Kohn, “Wrinkling of a thin circular sheet bonded to a spherical substrate, Philosophical Transactions of the Royal Society A: Mathematical,” Phys. Eng. Sci., vol. 375, no. 2093, pp. 20160157, 2017. DOI: 10.1098/rsta.2016.0157.
  • C. Q. Ru, “Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium,” J. Mech. Phys. Solids, vol. 49, no. 6, pp. 1265–1279, 2001. DOI: 10.1016/S0022-5096(00)00079-X.
  • C. M. Wang, V. B. C. Tan, and Y. Y. Zhang, “Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes,” J. Sound Vib., vol. 294, no. 4-5, pp. 1060–1072, 2006. DOI: 10.1016/j.jsv.2006.01.005.
  • Q. Han, G. Lu, and L. Dai, “Bending instability of an embedded double-walled carbon nanotube based on Winkler and van der Waals models,” Compos. Sci. Technol., vol. 65, no. 9, pp. 1337–1346, 2005. DOI: 10.1016/j.compscitech.2004.12.003.
  • L. B. Freund, and S. Suresh, Thin Film Materials: Stress Defect Formation, And Surface Evolution, Cambridge University Press, Cambridge, UK, 2004.
  • X. Chen, and J. W. Hutchinson, “Herringbone buckling patterns of compressed thin films on compliant substrates,” J. Appl. Mech., vol. 71, no. 5, pp. 597–603, 2004. DOI: 10.1115/1.1756141.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.