249
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Nonlinear size-dependent vibration behavior of graphene nanoplate considering surfaces effects using a multiple-scale technique

, ORCID Icon &
Pages 697-706 | Received 08 Apr 2018, Accepted 26 Jun 2018, Published online: 29 Aug 2018

References

  • A. Kis et al., Nanomechanics of microtubules, Phys. Rev. Lett., vol. 89, no. 24, p. 248101, Nov. 2002. doi:10.1103/PhysRevLett.89.248101.
  • F. Pampaloni, et al. Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length., Proc. Natl. Acad. Sci. U. S. A., vol. 103, no. 27, pp. 10248–10253, Jul. 2006. doi:10.1073/pnas.0603931103.
  • E. W. Wong, P. E. Sheehan, and C. M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science (80-.)., vol. 277, no. 5334, 1997. doi:10.1126/science.277.5334.1971.
  • R. E. Miller and V. B. Shenoy, Size-dependent elastic properties of nanosized structural elements, Nanotechnology, vol. 11, no. 3, pp. 139–147, 2000. doi:10.1088/0957-4484/11/3/301.
  • M. H. Ghayesh, M. Amabili, and H. Farokhi, Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory, Int. J. Eng. Sci., vol. 63, pp. 52–60, Feb. 2013. doi:10.1016/j.ijengsci.2012.12.001.
  • A. Ghorbanpour Arani and S. Amir, Electro-thermal vibration of visco-elastically coupled BNNT systems conveying fluid embedded on elastic foundation via strain gradient theory, Phys. B Condens. Matter, vol. 419, pp. 1–6, 2013. doi:10.1016/j.physb.2013.03.010.
  • Y.-G. Sun, X.-H. Yao, Y.-J. Liang, and Q. Han, Nonlocal beam model for axial buckling of carbon nanotubes with surface effect, EPL (Europhysics Lett., vol. 99, no. 5, p. 56007, Sep. 2012. doi:10.1209/0295-5075/99/56007.
  • B. Akgöz and Ö. Civalek, Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories, J. Comput. Theor. Nanosci., vol. 8, no. 9, pp. 1821–1827, 2011. doi:10.1166/jctn.2011.1888.
  • B. Akgöz and Ö. Civalek, Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory, Meccanica, pp. 1–11, 2013.
  • A. C. Eringen, Nonlocal Continuum Field Theories. Springer Science & Business Media, 2002.
  • A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., vol. 54, no. 9, pp. 4703–4710, 1983. doi:10.1063/1.332803.
  • J. N. Reddy, S. El-Borgi, and J. Romanoff, Non-linear analysis of functionally graded microbeams using Eringens non-local differential model, Int. J. Non. Linear. Mech., vol. 67, pp. 308–318, 2014. doi:10.1016/j.ijnonlinmec.2014.09.014.
  • Z. Zhang, C. M. Wang, and N. Challamel, Eringen's length scale coefficient for buckling of nonlocal rectangular plates from microstructured beam-grid model, Int. J. Solids Struct., vol. 51, no. 25–26, pp. 4307–4315, 2014. doi:10.1016/j.ijsolstr.2014.08.017.
  • J. Fernández-Sáez and R. Zaera, Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory, Int. J. Eng. Sci., vol. 119, pp. 232–248, 2017. doi:10.1016/j.ijengsci.2017.06.021.
  • M. Trabelssi, S. El-Borgi, L.-L. Ke, and J. N. Reddy, Nonlocal free vibration of graded nanobeams resting on a nonlinear elastic foundation using DQM and LaDQM, Compos. Struct., vol. 176, pp. 736–747, 2017. doi:10.1016/j.compstruct.2017.06.010.
  • J. Aranda-Ruiz, J. Loya, and J. Fern?ndez-S?ez, Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory, Compos. Struct., vol. 94, no. 9, pp. 2990–3001, Sep. 2012. doi:10.1016/j.compstruct.2012.03.033.
  • R. Gholami and R. Ansari, A unified nonlocal nonlinear higher-order shear deformable plate model for postbuckling analysis of piezoelectric-piezomagnetic rectangular nanoplates with various edge supports, Compos. Struct., vol. 166, pp. 202–218, 2017. doi:10.1016/j.compstruct.2017.01.045.
  • R. Kolahchi, A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods, Aerosp. Sci. Technol., vol. 66, pp. 235–248, 2017. doi:10.1016/j.ast.2017.03.016.
  • C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, Size dependence of Young's modulus in ZnO nanowires, Phys. Rev. Lett., vol. 96, no. 7, p. 75505, 2006. doi:10.1103/PhysRevLett.96.075505.
  • N. Challamel, F. Hache, I. Elishakoff, and C. M. Wang, Buckling and vibrations of microstructured rectangular plates considering phenomenological and lattice-based nonlocal continuum models, Compos. Struct., vol. 149, pp. 145–156, Aug. 2016. doi:10.1016/j.compstruct.2016.04.007.
  • M. Gurtin and A. Ian Murdoch, A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal., vol. 57, no. 4, pp. 291–323, 1975. doi:10.1007/BF00261375.
  • M. Gurtin and A. I. Murdoch, Addenda to our paper A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal., vol. 59, no. 4, pp. 389–390, 1975. doi:10.1007/BF00250426.
  • K. F. Wang, B. L. Wang, M. H. Xu, and A. B. Yu, Influences of surface and interface energies on the nonlinear vibration of laminated nanoscale plates, Compos. Struct., vol. 183, no. 1, pp. 423–433, 2017.
  • A. R. Setoodeh, P. Malekzadeh, and A. R. Vosoughi, Nonlinear free vibration of orthotropic graphene sheets using nonlocal Mindlin plate theory, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 226, no. 7, pp. 1896–1906, Jul. 2011. doi:10.1177/0954406211428997.
  • M. Ghadiri, A. Rajabpour, and A. Akbarshahi, Non-linear forced vibration analysis of nanobeams subjected to moving concentrated load resting on a viscoelastic foundation considering thermal and surface effects, Appl. Math. Model., vol. 50, pp. 676–694, 2017. doi:10.1016/j.apm.2017.06.019.
  • M. F. Oskouie and R. Ansari, Linear and nonlinear vibrations of fractional viscoelastic Timoshenko nanobeams considering surface energy effects, Appl. Math. Model., vol. 43, pp. 337–350, 2017. doi:10.1016/j.apm.2016.11.036.
  • P. Malekzadeh and M. Shojaee, Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams, Compos. Part B Eng., vol. 52, pp. 84–92, Sep. 2013. doi:10.1016/j.compositesb.2013.03.046.
  • H. L. Dai, D. M. Zhao, J. J. Zou, and L. Wang, Surface effect on the nonlinear forced vibration of cantilevered nanobeams, Phys. E Low-dimensional Syst. Nanostruct., vol. 80, pp. 25–30, Jun. 2016. doi:10.1016/j.physe.2016.01.008.
  • H. Rouhi, R. Ansari, and M. Darvizeh, Nonlinear free vibration analysis of cylindrical nanoshells based on the Ru model accounting for surface stress effect, Int. J. Mech. Sci., vol. 113, pp. 1–9, Jul. 2016. doi:10.1016/j.ijmecsci.2016.04.004.
  • P. Malekzadeh, M. R. Golbahar Haghighi, and M. Shojaee, Nonlinear free vibration of skew nanoplates with surface and small scale effects, Thin-Walled Struct., vol. 78, pp. 48–56, May 2014. doi:10.1016/j.tws.2013.10.027.
  • E. Allahyari and M. Fadaee, Analytical investigation on free vibration of circular double-layer graphene sheets including geometrical defect and surface effects, Compos. Part B Eng., vol. 85, pp. 259–267, Feb. 2016. doi:10.1016/j.compositesb.2015.09.036.
  • P. Malekzadeh and M. Shojaee, A two-variable first-order shear deformation theory coupled with surface and nonlocal effects for free vibration of nanoplates, J. Vib. Control, vol. 21, no. 14, pp. 2755–2772, Oct. 2015. doi:10.1177/1077546313516667.
  • S. A. Mirkalantari, M. Hashemian, S. A. Eftekhari, and D. Toghraie, Pull-in instability analysis of rectangular nanoplate based on strain gradient theory considering surface stress effects, Phys. B Condens. Matter, vol. 519, pp. 1–14, 2017. doi:10.1016/j.physb.2017.05.028.
  • M. Asgari and M. Akhlaghi, Natural frequency analysis of 2D-FGM thick hollow cylinder based on three-dimensional elasticity equations, Eur. J. Mech. – A/Solids, vol. 30, no. 2, pp. 72–81, 2011. doi:10.1016/j.euromechsol.2010.10.002.
  • S. Saffari, M. Hashemian, and D. Toghraie, Dynamic stability of functionally graded nanobeam based on nonlocal Timoshenko theory considering surface effects, Phys. B Condens. Matter, vol. 520, pp. 97–105, 2017. doi:10.1016/j.physb.2017.06.029.
  • Z. Sarvi, M. Asgari, M. Shariyat, and H. S. Googarchin, Explicit expressions describing elastic properties and buckling load of BN nanosheets due to the effects of vacancy defects, Superlattices Microstruct., vol. 88, pp. 668–678, 2015. doi:10.1016/j.spmi.2015.10.028.
  • M. Asgari, Material distribution optimization of 2D heterogeneous cylinder under thermo-mechanical loading, Struct. Eng. Mech., vol. 53, no. 4, pp. 703–723, Feb. 2015. doi:10.12989/sem.2015.53.4.703.
  • M. Shariyat, Z. Sarvi, and M. Asgari, A unit-cell-based three-dimensional molecular mechanics analysis for buckling load, effective elasticity and Poisson's ratio determination of the nanosheets, Mol. Simul., vol. 7022, no. December 2015, pp. 1–17, 2015.
  • M. Asgari, Free vibration analysis of functionally heterogeneous hollow cylinder based on three dimensional elasticity theory, Int. J. Acoust. Vib., vol. 22, no. 2, pp. 151–160, 2017.
  • P. Malekzadeh and A. Alibeygi Beni, Nonlinear Free Vibration of In-Plane Functionally Graded Rectangular Plates, Mech. Adv. Mater. Struct., vol. 22, no. 8, pp. 633–640, Aug. 2015. doi:10.1080/15376494.2013.828818.
  • P. R. Swain, B. Adhikari, and P. Dash, A higher-order polynomial shear deformation theory for geometrically nonlinear free vibration response of laminated composite plate, Mech. Adv. Mater. Struct., pp. 1–10, Sep. 2017. doi:10.1080/15376494.2017.1365981.
  • C. Liu, L.-L. Ke, J. Yang, S. Kitipornchai, and Y.-S. Wang, Nonlinear vibration of piezoelectric nanoplates using nonlocal Mindlin plate theory, Mech. Adv. Mater. Struct., pp. 1–13, Sep. 2016. doi:10.1080/15376494.2016.1149648.
  • X. Huang, X. Jia, J. Yang, and Y. Wu, Nonlinear Vibration and Dynamic Response of Three-Dimensional Braided Composite Plates, Mech. Adv. Mater. Struct., vol. 15, no. 1, pp. 53–63, Jan. 2008. doi:10.1080/15376490701750405.
  • A. Mitra, P. Sahoo, and K. Saha, Nonlinear Vibration Analysis of Simply Supported Stiffened Plate by a Variational Method, Mech. Adv. Mater. Struct., vol. 20, no. 5, pp. 373–396, May 2013. doi:10.1080/15376494.2011.627640.
  • M. H. Ghayesh, H. Farokhi, A. Gholipour, and M. Tavallaeinejad, Nonlinear bending and forced vibrations of axially functionally graded tapered microbeams, Int. J. Eng. Sci., vol. 120, pp. 51–62, 2017. doi:10.1016/j.ijengsci.2017.03.010.
  • A. A. Jafari, S. M. R. Khalili, and M. Tavakolian, Nonlinear vibration of functionally graded cylindrical shells embedded with a piezoelectric layer, Thin-Walled Struct., vol. 79, pp. 8–15, Jun. 2014. doi:10.1016/j.tws.2014.01.030.
  • M.-R. Ghazavi, A. Najafi, and A.-A. Jafari, Bifurcation and nonlinear analysis of nonconservative interaction between rotor and blade row, Mech. Mach. Theory, vol. 65, pp. 29–45, Jul. 2013. doi:10.1016/j.mechmachtheory.2013.02.008.
  • X. Xu, Q. Han, and F. Chu, Nonlinear vibration of a rotating cantilever beam in a surrounding magnetic field, Int. J. Non. Linear. Mech., vol. 95, pp. 59–72, 2017. doi:10.1016/j.ijnonlinmec.2017.05.014.
  • M. Alves and P. Ribeiro, Non-linear modes of vibration of Timoshenko nanobeams under electrostatic actuation, Int. J. Mech. Sci., vol. 130, pp. 188–202, 2017. doi:10.1016/j.ijmecsci.2017.06.003.
  • H.-S. Shen, Y. Xiang, and F. Lin, Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments, Comput. Methods Appl. Mech. Eng., vol. 319, pp. 175–193, 2017. doi:10.1016/j.cma.2017.02.029.
  • F. Ebrahimi and S. H. S. Hosseini, Effect of temperature on pull-in voltage and nonlinear vibration behavior of nanoplate-based NEMS under hydrostatic and electrostatic actuations, Acta Mech. Solida Sin., vol. 30, no. 2, pp. 174–189, 2017. doi:10.1016/j.camss.2017.02.001.
  • N. D. Duc, V. D. Quang, and V. T. T. Anh, The nonlinear dynamic and vibration of the S-FGM shallow spherical shells resting on an elastic foundations including temperature effects, Int. J. Mech. Sci., vol. 123, pp. 54–63, 2017. doi:10.1016/j.ijmecsci.2017.01.043.
  • X.-Q. Fang and C.-S. Zhu, Size-dependent nonlinear vibration of nonhomogeneous shell embedded with a piezoelectric layer based on surface/interface theory, Compos. Struct., vol. 160, pp. 1191–1197, 2017. doi:10.1016/j.compstruct.2016.11.008.
  • P. Firoozy, S. E. Khadem, and S. M. Pourkiaee, Broadband energy harvesting using nonlinear vibrations of a magnetopiezoelastic cantilever beam, Int. J. Eng. Sci., vol. 111, pp. 113–133, 2017. doi:10.1016/j.ijengsci.2016.11.006.
  • J. N. Reddy, An introduction to continuum mechanics. Cambridge university press, 2013.
  • M. E. Gurtin and A. Ian Murdoch, Surface stress in solids, Int. J. Solids Struct., vol. 14, no. 6, pp. 431–440, 1978. doi:10.1016/0020-7683(78)90008-2.
  • A. H. Nayfeh and P. F. Pai, Linear and nonlinear structural mechanics. John Wiley & Sons, 2008.
  • A. Assadi, Size dependent forced vibration of nanoplates with consideration of surface effects, Appl. Math. Model., vol. 37, no. 5, pp. 3575–3588, Mar. 2013. doi:10.1016/j.apm.2012.07.049.
  • S. S. Rao, Vibration of continuous systems. John Wiley & Sons, 2007.
  • A. H. Nayfeh and D. T. Mook, Nonlinear oscillations. John Wiley & Sons, 2008.
  • N. Yamaki, Influence of large amplitudes on flexural vibrations of elastic plates, ZAMM-Journal Appl. Math. Mech. für Angew. Math. und Mech., vol. 41, no. 12, pp. 501–510, 1961.
  • N. Ding, X. Chen, and C.-M. L. Wu, Mechanical properties and failure behaviors of the interface of hybrid graphene/hexagonal boron nitride sheets, Sci. Rep., vol. 6, p. 31499, 2016. doi:10.1038/srep31499.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.