106
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Exact geometry four-node solid-shell element for stress analysis of functionally graded shell structures via advanced SaS formulation

&
Pages 948-964 | Received 14 Jul 2018, Accepted 16 Jul 2018, Published online: 31 Dec 2018

References

  • J. J. Rhiu, and S. W. Lee, “A new efficient mixed formulation for thin shell finite element models,” Int. J. Numer. Meth. Eng., vol. 24, no. 3, pp. 581–604, 1987.
  • Y. H. Kim, and S. W. Lee, “A solid element formulation for large deflection analysis of composite shell structures,” Comp. Struct., vol. 30, no. 1–2, pp. 269–274, 1988.
  • N. Büchter, E. Ramm, and D. Roehl, “Three-dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept,” Int. J. Numer. Meth. Eng., vol. 37, no. 15, pp. 2551–2568, 1994.
  • K. Y. Sze, S. Yi, and M. H. Tay, “An explicit hybrid stabilized eighteen-node solid element for thin shell analysis,” Int. J. Numer. Meth. Eng., vol. 40, no. 10, pp. 1839–1856, 1997.
  • K. Y. Sze, W. K. Chan, and T. H. H. Pian, “An eight-node hybrid-stress solid-shell element for geometric non-linear analysis of elastic shells,” Int. J. Numer. Meth. Eng., vol. 55, no. 7, pp. 853–878, 2002.
  • G. M. Kulikov, and S. V. Plotnikova, “Non-linear strain-displacement equations exactly representing large rigid-body motions. Part I. Timoshenko-Mindlin Shell theory,” Comput. Methods Appl. Mech. Eng., vol. 192, no. 7-8, pp. 851–875, 2003.
  • G. M. Kulikov, and S. V. Plotnikova, “Non-linear geometrically exact assumed stress-strain four-node solid-shell element with high coarse-mesh accuracy,” Finite Elem. Anal. Des., vol. 43, no. 6-7, pp. 425–443, 2007.
  • S. Klinkel, F. Gruttmann, and W. Wagner, “A robust non-linear solid shell element based on a mixed variational formulation,” Comput. Methods Appl. Mech. Eng, vol. 195, no. 1–3, pp. 179–201, 2006.
  • H. Parisch, “A continuum-based shell theory for non-linear applications,” Int. J. Numer. Meth. Eng., vol. 38, no. 11, pp. 1855–1883, 1995.
  • Y. Başar, M. Itskov, and A. Eckstein, “Composite laminates: nonlinear interlaminar stress analysis by multi-layer shell elements,” Comput. Methods Appl. Mech. Eng, vol. 185, no. 2–4, pp. 367–397, 2000.
  • N. El-Abbasi, and S. A. Meguid, “A new shell element accounting for through-thickness deformation,” Comput. Methods Appl. Mech. Eng., vol. 189, no. 3, pp. 841–862, 2000.
  • N. El-Abbasi, and S. A. Meguid, “Finite element modeling of the thermoelastic behavior of functionally graded plates and shells,” Int. J. Comp. Eng. Sci., vol. 01, no. 01, pp. 151–165, 2000.
  • C. Sansour, and F. G. Kollmann, “Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements,” Comput. Mech., vol. 24, no. 6, pp. 435–447, 2000.
  • B. Brank, J. Korelc, and A. Ibrahimbegović, “Nonlinear shell problem formulation accounting for through-the-thickness stretching and its finite element implementation,” Comput. Struct., vol. 80, no. 9–10, pp. 699–717, 2002.
  • B. Brank, “Nonlinear shell models with seven kinematic parameters,” Comput. Methods Appl. Mech. Eng., vol. 194, no. 21–24, pp. 2336–2362, 2005.
  • R. A. Arciniega, and J. N. Reddy, “Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures,” Comput. Methods Appl. Mech. Eng., vol. 196, no. 4–6, pp. 1048–1073, 2007.
  • R. A. Arciniega, and J. N. Reddy, “Large deformation analysis of functionally graded shells,” Int. J. Solids Struct., vol. 44, no. 6, pp. 2036–2052, 2007.
  • G. M. Kulikov, and S. V. Plotnikova, “Finite rotation geometrically exact four-node solid-shell element with seven displacement degrees of freedom,” Comput. Model. Eng. Sci., vol. 28, pp. 15–38, 2008.
  • K. Lee, and S. W. Lee, “An assumed strain solid shell element formulation with transversely quadratic displacement,” Comput. Model. Eng. Sci., vol. 34, pp. 253–272, 2008.
  • G. M. Kulikov, and S. V. Plotnikova, “Calculation of composite structures subjected to follower loads by using a geometrically exact shell element,” Mech. Compos. Mater., vol. 45, no. 6, pp. 545–556, 2009.
  • H. B. Coda, R. R. Paccola, and M. S. M. Sampaio, “Positional description applied to the solution of geometrically non-linear plates and shells,” Finite Elem. Anal. Des., vol. 67, pp. 66–75, 2013.
  • G. S. Payette, and J. N. Reddy, “A seven-parameter spectral/hp finite element formulation for isotropic, laminated composite and functionally graded shell structures,” Comput. Methods Appl. Mech. Eng., vol. 278, pp. 664–704, 2014.
  • H. B. Coda, R. R. Paccola, and R. Carrazedo, “Zig-Zag effect without degrees of freedom in linear and nonlinear analysis of laminated plates and shells,” Compos. Struct., vol. 161, pp. 32–50, 2017.
  • G. M. Kulikov, and S. V. Plotnikova, “Non-linear exact geometry 12-node solid-shell element with three translational degrees of freedom per node,” Int. J. Numer. Meth. Eng., vol. 88, no. 13, pp. 1363–1389, 2011.
  • G. M. Kulikov, and S. V. Plotnikova, “The use of 9-parameter shell theory for development of exact geometry 12-node quadrilateral piezoelectric laminated solid-shell elements,” Mech. Adv. Mater. Struct., vol. 22, no. 6, pp. 490–502, 2015.
  • M. Cinefra, E. Carrera, L. D. Croce, and C. Chinosi, “Refined shell elements for the analysis of functionally graded structures,” Compos. Struct., vol. 94, no. 2, pp. 415–422, 2012.
  • M. Cinefra, and E. Carrera, “Shell finite elements with different through-the-thickness kinematics for the linear analysis of cylindrical multilayered structures,” Int. J. Numer. Meth. Eng., vol. 93, no. 2, pp. 160–182, 2013.
  • E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino, Finite Element Analysis of Structures through Unified Formulation, John Wiley & Sons, Chichester, West Sussex, 2014.
  • T. H. C. Le, M. D'Ottavio, P. Vidal, and O. Polit, “A new robust quadrilateral four-node variable kinematics plate element for composite structures,” Finite Elem. Anal. Des., vol. 133, pp. 10–24, 2017.
  • P. Vidal, L. Gallimard, and O. Polit, “Robust layerwise C0 finite element approach based on a variable separation method for the modeling of composite and sandwich plates,” Finite Elem. Anal. Des., vol. 139, pp. 1–13, 2018.
  • G. M. Kulikov, and S. V. Plotnikova, “On the use of sampling surfaces method for solution of 3D elasticity problems for thick shells,” ZAMM - J. Appl. Math. Mech., vol. 92, no. 11–12, pp. 910–920, 2012.
  • G. M. Kulikov, and S. V. Plotnikova, “On the use of a new concept of sampling surfaces in a shell theory,” Adv. Struct. Mater., vol. 15, pp. 715–726, 2011.
  • G. M. Kulikov, A. A. Mamontov, S. V. Plotnikova, and S. A. Mamontov, “Exact geometry solid-shell element based on a sampling surfaces technique for 3D stress analysis of doubly-curved composite shells,” Curved Layered Struct., vol. 3, pp. 1–16, 2016.
  • G. M. Kulikov, S. V. Plotnikova, and E. Carrera, “A robust, four-node, quadrilateral element for stress analysis of functionally graded plates through higher-order theories,” Mech. Adv. Mater. Struct., vol. 25, pp. 1, 2017. doi: 10.1080/15376494.2017.1288994.
  • N. S. Bakhvalov, Numerical Methods: Analysis, Algebra, Ordinary Differential Equations, MIR Publishers, Moscow, 1977.
  • T. H. H. Pian, “State-of-the-art development of hybrid/mixed finite element method,” Finite Elem. Anal. Des., vol. 21, no. 1–2, pp. 5–20, 1995.
  • T. H. H. Pian, and K. Sumihara, “Rational approach for assumed stress finite elements,” Int. J. Numer. Meth. Eng., vol. 20, no. 9, pp. 1685–1695, 1984.
  • S. W. Lee, and T. H. H. Pian, “Improvement of plate and shell finite elements by mixed formulations,” Aiaa J, vol. 16, no. 1, pp. 29–34, 1978.
  • G. Wempner, D. Talaslidis, and C. M. Hwang, “A simple and efficient approximation of shells via finite quadrilateral elements,” J. Appl. Mech., vol. 49, no. 1, pp. 115–120, 1982.
  • G. M. Kulikov, and S. V. Plotnikova, “Geometrically exact assumed stress-strain multilayered solid-shell elements based on the 3D analytical integration,” Comput. Struct., vol. 84, no. 19–20, pp. 1275–1287, 2006.
  • S. A. Ambartsumyan, Theory of Anisotropic Shells, NASA TT F-118, Washington, D.C., 1964.
  • G. M. Kulikov, and S. V. Plotnikova, “Solution of three-dimensional problems for thick elastic shells by the method of reference surfaces,” Mech. Solids., vol. 49, no. 4, pp. 403–412, 2014.
  • T. J. R. Hughes, and T. E. Tezduyar, “Finite elements based upon mindlin plate theory with particular reference to the four-node bilinear isoparametric element,” J. Appl. Mech., vol. 48, no. 3, pp. 587–596, 1981.
  • K. J. Bathe, and E. N. Dvorkin, “A formulation of general shell elements - the use of mixed interpolation of tensorial components,” Int. J. Numer. Meth. Eng., vol. 22, no. 3, pp. 697–722, 1986.
  • Y. Ko, P. S. Lee, and K. J. Bathe, “A new MITC4+ shell element,” Comput. Struct, vol. 182, pp. 404–418, 2017.
  • P. Betsch, and E. Stein, “An assumed strain approach avoiding artificial thickness straining for a nonlinear 4-node shell element,” Commun. Numer. Meth. Engng., vol. 11, no. 11, pp. 899–909, 1995.
  • G. M. Kulikov, and S. V. Plotnikova, “A hybrid-mixed four-node quadrilateral plate element based on sampling surfaces method for 3D stress analysis,” Int. J. Numer. Meth. Eng., vol. 108, no. 1, pp. 26–54, 2016.
  • T. K. Varadan, and K. Bhaskar, “Bending of laminated orthotropic cylindrical shells - an elasticity approach,” Compos. Struct., vol. 17, no. 2, pp. 141–156, 1991.
  • T. Belytschko, B. L. Wong, and H. Stolarski, “Assumed strain stabilization procedure for the 9-node lagrange shell element,” Int. J. Numer. Meth. Eng., vol. 28, no. 2, pp. 385–414, 1989.
  • T. J. R. Hughes, and W. K. Liu, “Nonlinear finite element analysis of shells. Part II: two-dimensional shells,” Comput. Methods Appl. Mech. Eng., vol. 27, no. 2, pp. 167–181, 1981.
  • W. K. Liu, E. S. Law, D. Lam, and T. Belytschko, “Resultant-stress degenerated-shell element,” Comput. Methods Appl. Mech. Eng., vol. 55, no. 3, pp. 259–300, 1986.
  • J. C. Simo, D. D. Fox, and M. S. Rifai, “On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects,” Comput. Methods Appl. Mech. Eng., vol. 73, no. 1, pp. 53–92, 1989.
  • ANSYS Release 5.6, ANSYS Inc, Canonsburg, PA, 1999.
  • S. P. Timoshenko, and J. N. Goodier, Theory of Elasticity, McGraw-Hill, New York, 1970.
  • T. Mori, and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., vol. 21, no. 5, pp. 571–574, 1973.
  • Y. Benveniste, “A new approach to the application of Mori–Tanaka’s theory in composite materials,” Mech. Mater., vol. 6, pp. 147–157, 1987.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.