111
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Analytical layerwise solution of nonlinear thermal instability of SMA hybrid composite beam under nonuniform temperature condition

ORCID Icon & ORCID Icon
Pages 1673-1686 | Received 18 May 2018, Accepted 13 Sep 2018, Published online: 12 Jan 2019

References

  • M. Samadpour, H. Asadi, and Q. Wang, “Nonlinear aero-thermal flutter postponement of supersonic laminated composite beams with shape memory alloys,” Eur. J. Mech. A Solid., vol. 57, pp. 18–28, 2016.
  • Z. Zhang, and P. Sheng, “Research on stability and nonlinear vibration of shape memory alloy hybrid laminated composite panel under aerodynamic and thermal loads,” J. Intel. Mater. Syst. Struct., vol. 27, no. 20, pp. 1–11, 2016.
  • S. Pejman, and M. Kadkhodaei, “A smart thermal actuator for temperature control of the flat solar collectors using NiTi shape memory alloy thin wires,” Mech. Adv. Mater. Struct., vol. 106, pp. 9–17, 2016. DOI: 10.1080/15376494.2016.1227502.
  • S. Hassanli, and B. Samali, “Buckling analysis of laminated composite curved panels reinforced with linear and non-linear distribution of shape memory alloys,” Thin-Wall Struct., vol. 106, pp. 9–17, 2016.
  • A. Barut, E. Madenci, and A. Tessler, “Nonlinear thermoelastic analysis of composite panels under non-uniform temperature distribution,” Int. J. Solid. Struct., vol. 37, no. 27, pp. 3681–3713, 2000.
  • L. C. Brinson, “One-dimensional constitutive behaviour of shape memory alloys: thermo-mechanical derivation with non-constant material functions and redefined martensite internal variable,” J. Intel. Mater. Syst. Struct., vol. 4, no. 2, pp. 229–242, 1993.
  • H. Asadi, M. Bodaghi, M. Shakeri, and M. M. Aghdam, “Nonlinear dynamics of SMA-fiber-reinforced composite beams subjected to a primary/secondary-resonance excitation,” Acta Mechan., vol. 226, no. 2, pp. 437–455, 2015.
  • M. B. Dehkordi, “Modeling of simultaneous shape memory and pseudoelastic effects of shape memory alloys on nonlinear dynamic response of multilayer composite plate embedded with pre-strained SMA wires under thermal condition,” Mech. Adv. Mater. Struct., pp. 1–12, 2018.
  • M. B. Dehkordi, S. M. R. Khalili, and E. Carrera, “Non-linear transient dynamic analysis of sandwich plate with composite face-sheets embedded with shape memory alloy wires and flexible core-based on the mixed LW (layer-wise)/ESL (equivalent single layer) models,” Compos. Part B: Eng., vol. 87, pp. 59–74, 2016.
  • B. T. Lester, T. Baxevanis, Y. Chemisky, and D. C. Lagoudas, “Review and perspectives: shape memory alloy composite systems,” Acta Mechnica, vol. 226, pp. 3907–3960, 2015. DOI: 10.1007/s00707-015-1433-0.
  • H. Asadi, Y. Kiani, M. M. Aghdam, and M. Shakeri, “Enhanced thermal buckling of laminated composite cylindrical shells with shape memory alloy,” J. Compos. Mater., vol. 50, pp.243–256, 2015.
  • S. Choi, J. J. Lee, and D. C. Lee, “Thermal buckling of laminated composite beams with embedded shape memory alloy actuators,” J. Compos. Mater., vol. 34, no. 18, pp. 1529–1547, 2000.
  • T. Akbari, and S. M. R. Khalili, “Experimental investigations on the mechanical properties and buckling behavior of the filament wound composite shells embedded with shape memory alloy wires,” Mech. Adv. Mater. Struct., pp. 1–7, 2018. DOI: 10.1080/15376494.2018.1434260.
  • S. K. Kumar, and B. N. Singh, “Thermal buckling analysis of SMA fiber-reinforced composite plates using layerwise model,” J. Aerosp. Eng., vol. 22, no. 4, pp. 342–353, 2009.
  • C. N. Kumar, and B. N. Singh, “Thermal buckling and post-buckling of laminated composite plates with SMA fibers using layerwise theory,” Int. J. Comput. Method. Eng. Sci. Mech., vol. 10, no. 6, pp. 423–429, 2009.
  • S. K. Panda, and B. N. Singh, “Post-buckling analysis of laminated composite doubly curved panel embedded with SMA fibers subjected to thermal environment,” Mech. Adv. Mater. Struct., vol. 20, no. 10, pp. 842–853, 2013.
  • S. Kamarian, and M. Shakeri, “Thermal buckling analysis and stacking sequence optimization of rectangular and skew shape memory alloy hybrid composite plates,” Compos. Part B: Eng., vol. 116, pp. 137–152, 2017. doi.org/10.1016/j.compositesb.2017.01.059.
  • H. Asadi, A. H. Akbarzadeh, Z. T. Chen, and M. M. Aghdam, “Enhanced thermal stability of functionally graded sandwich cylindrical shells by shape memory alloys,” Smart Mater. Struct., vol. 24, no. 4, pp. 045022, 2015. DOI: 10.1088/0964-1726/24/4/045022.
  • H. Asadi, A. H. Akbarzadeh, and Q. Wang, “Nonlinear thermo-inertial instability of functionally graded shape memory alloy sandwich plates,” Compos. Struct., vol. 120, pp. 496–508, 2015.
  • H. Asadi, M. Bodaghi, M. Shakeri, and M. M. Aghdam, “An analytical approach for nonlinear vibration and thermal stability of shape memory alloy hybrid laminated composite beams,” Eur. J. Mech. A Solid., vol. 42, pp. 454–468, 2013.
  • H. Asadi, M. Bodaghi, M. Shakeri, and M. M. Aghdam, “On the free vibration of thermally pre/post-buckled shear deformable SMA hybrid composite beams,” Aerosp. Sci. Technol., vol. 31, no. 1, pp. 73–86, 2013.
  • H. Asadi, Y. Kiani, M. Shakeri, and M. R. Eslami, “Exact solution for nonlinear thermal stability of hybrid laminated composite timoshenko beams reinforced with SMA fibers,” Compos. Struct., vol. 108, pp. 811–822, 2014.
  • H. Asadi, Y. Kiani, M. Shakeri, and M. R. Eslami, “Exact solution for nonlinear thermal stability of geometrically imperfect hybrid laminated composite timoshenko beams embedded with SMA fibers,” J. Eng. Mech., vol. 141, no. 4, pp. 04014144, 2015. DOI: 10.1061/(ASCE)EM.1943-7889.0000873.
  • Y. Bayat, and H. EkhteraeiToussi, “Exact solution of thermal buckling and post buckling of composite and SMA hybrid composite beam by layerwise theory,” Aerosp. Sci. Technol., vol. 67, pp. 484–494, 2017.
  • W. J. Chen, P. D. Lin, and L. W. Chen, “Thermal buckling behaviour of thick composite laminated plates under non-uniform temperature distribution,” Comput. Struct., vol. 41, no. 4, pp. 637–645, 1991.
  • M. M. M. Ghomshei, and A. Mahmoudi, “Thermal buckling analysis of cross-ply laminated rectangular plates under non-uniform temperature distribution: a differential quadrature approach,” J. Mech. Sci. Technol., vol. 24, no. 12, pp. 2519–2527, 2010.
  • Z. G. Song, and F. M. Li, “Aero-thermo-elastic analysis of nonlinear composite laminated panel with aerodynamic heating in hypersonic flow,” Compos. Part B: Eng., vol. 56, pp. 830–839, 2014.
  • J. Li, Y. Narita, and Z. Wang, “The effects of non-uniform temperature distribution and locally distributed anisotropic properties on thermal buckling of laminated panels,” Compos. Struct., vol. 119, pp. 610–619, 2015.
  • Z. A. Rasid, R. Zahari, A. Ayob, D. L. Majid, and A. S. M. Rafie, “Thermal post-buckling of shape memory alloy composite plates under non-uniform temperature distribution,” Int. Sci. Index Mech. Mechatron. Eng., vol. 5, no. 8, pp. 1649–1654, 2011.
  • N. N. Huang, and T. R. Buchert, “Large deformation of antisymmetric Angle-Ply laminates resulting from non-uniform temperature loadings,” J. Therm. Stress., vol. 11, pp. 287–297, 1988.
  • S. Li, and X. Song, “Large thermal deflections of Timoshenko beams under transversely non-uniform temperature rise,” Mech. Res. Commun., vol. 33, no. 1, pp. 84–92, 2006.
  • Z. M. Li, “Thermal postbuckling behavior of 3D braided beams with initial geometric imperfection under different type temperature distributions,” Compos. Struct., vol. 108, pp. 924–936, 2014.
  • L. C. Trinh, T. P. Vo, H. T. Thai, and T. K. Nguyen, “An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads,” Compos. Part B: Eng., vol. 100, no. 1, pp. 152–163, 2016. DOI: 10.1016/j.compositesb.2016.06.067.
  • M. Cetkovic, “Thermal buckling of laminated composite plates using layerwise displacement model,” Compos. Struct., vol. 142, pp. 238–253, 2016.
  • L. Xue, G. Dui, B. Liu, and J. Zhang, “Theoretical analysis of a functionally graded shape memory alloy plate under graded temperature loading,” Mech. Adv. Mater. Struct., vol. 23, no. 10, pp. 1181–1187, 2016. doi:10.1080/15376494.2015.1068398.
  • S. E. Esfahani, Y. Kiani, and M. R. Eslami, “Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations,” Int. J. Mech. Sci., vol. 69, pp. 10–20, 2013.
  • V. Birman, D. A. Saravanis, and D. A. Hopkins, “Micromechanics of composites with shape memory alloy fibers in uniform thermal fields,” Am. Inst. Aeronaut. Astronaut. J., vol. 34, no. 9, pp. 1905–1912, 1996.
  • M. Tahani, and S. M. Mirzababaee, “Non-linear analysis of functionally graded plates in cylindrical bending under thermomechanical loadings based on a layerwise theory,” Eur. J. Mech. A Solid., vol. 28, no. 2, pp. 248–256, 2009.
  • J. N. Reddy, Mechanics of Laminated Composite Plates and Shells, 2nd ed., New York: CRC Press LLC, 2004.
  • B. A. Boley, and J. H. Winner, Theory of Thermal Stresses, New York: Dover, 1997.
  • C. T. Herakovich, Mechanics of Fibrous Composites, New York: Wiley, 1998.
  • S. Kawabata, and R. S. Rengasamy, “Thermal conductivity of unidirectional fiber composites made from yarns and computation of thermal conductivity of yarns,” Indian J. Fiber Tex. Res., vol. 27, pp. 217–223, 2002.
  • D. C. Lagoudas, Shape Memory Alloys, Texas: Springer, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.