160
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A refined sinusoidal theory for laminated composite and sandwich plates

, &
Pages 2013-2025 | Received 13 May 2018, Accepted 17 Oct 2018, Published online: 27 Dec 2018

References

  • C. H. Thai, M. A. Wahab, and N. X. Huang, A layerwise C0-type higher order shear deformation theory for laminated composite and sandwich plates, Comptes Rendus Mechan., vol. 346, no. 1, pp. 57–76, 2018.
  • M. Bohlooly, and B. Mirzavand, Thermomechanical buckling of hybrid cross-ply laminated rectangular plates, Adv. Compos. Mater., vol. 26, no. 5, pp. 407–426, 2017.
  • J. W. Han, J. S. Kim, and M. Cho, New enhanced first-order shear deformation theory for thermomechanical analysis of laminated composite and sandwich plates, Compos. Part B, vol. 116, pp. 422–450, 2017.
  • H. Nguyen-Xuan, V. L. Tran, T. Nguyen-Thoi, and H. C. Vu-Do, Analysis of functionally graded plates using an edge-based smoothed finite element method, Compos. Struct., vol. 93, no. 11, pp. 3019–3039, 2011.
  • X. Zhuang, R. Huang, H. Zhu, H. Askes, and K. Mathisen, A new and simple locking free triangular thick plate element using independent shear degrees of freedom, Finite Elem. Anal. Des., vol. 75, pp. 1–7, 2013.
  • C. Y. Lee, and J. H. Kim, Aero-hygrothermal effects on stability regions for functionally graded panels, Compos. Struct., vol. 133, pp. 257–264, 2015.
  • H. Matsunaga, Assessment of a global higher-order deformation theory for laminated composite and sandwich plates, Compos. Struct., vol. 56, no. 3, pp. 279–291, 2002.
  • J. N. Reddy, A simple higher-order theory for laminated composite plates, J Appl Mech, vol. 51, no. 4, pp. 745–752, 1984.
  • A. H. Sheikh, and A. Chakrabarti, A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates, Finite Elem. Anal. Des., vol. 39, no. 9, pp. 883–903, 2003.
  • A. K. Nayak, S. S. J. Moy, and R. A. Shenoi, A higher order finite element theory for buckling and vibration analysis of initially stressed composite sandwich plates, J. Sound Vib., vol. 286, no. 4–5, pp. 763–780, 2005.
  • H. H. Shahrokh, M. Fadaee, and H. R. D. Taher, Exact solutions for free flexural vibration of levy-type rectangular thick plates via third-order shear deformation plate theory, Appl. Math. Model., vol. 35, pp. 708–727, 2011.
  • T. Kant, and K. Swaminathan, Analytical solution for the static analysis of laminated composite and sandwich plates based on a higher order refined theory, Compos. Struct., vol. 56, no. 4, pp. 329–344, 2002.
  • K. Swaminathan, S. S. Patil, M. S. Nataraja, and K. S. Mahabaleswara, Bending of sandwich plates with anti-symmetric angle-ply face sheets-analytical evaluation of higher order refined computational models, Compos. Struct., vol. 75, no. 1–4, pp. 114–120, 2006.
  • K. Swaminathan, and S. S. Patil, Higher order refined computational model with 12 degrees of freedom for the stress analysis of antisymmetric angle-ply plates-analytical solutions, Compos. Struct., vol. 80, no. 4, pp. 595–608, 2007.
  • H. Matsunaga, A comparison between 2-D single-layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings, Compos. Struct., vol. 64, no. 2, pp. 161–177, 2004.
  • H. Matsunaga, Free vibration and stability of laminated composite circular arches subjected to initial axial stress, J. Sound Vib., vol. 271, no. 3–5, pp. 651–670, 2004.
  • H. Matsunaga, Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory, Compos. Struct., vol. 68, no. 4, pp. 439–454, 2005.
  • H. Matsunaga, Thermal buckling of cross-ply laminated composite shallow shells according to a global higher-order deformation theory, Compos. Struct., vol. 81, no. 2, pp. 210–221, 2007.
  • E. Carrera, An assessment of mixed and classical theories for the thermal stress analysis of orthotropic multilayered plates, J. Thermal Stresses, vol. 23, no. 9, pp. 797–831, 2000.
  • E. Carrera, Transverse normal strain effects on thermal stress analysis of homogeneous and layered plates, Aiaa J., vol. 43, no. 10, pp. 2232–2242, 2005.
  • E. Carrera, and F. Miglioretti, Selection of appropriate multilayered plate theories by using a genetic like algorithm, Compos. Struct., vol. 94, no. 3, pp. 1175–1186, 2012.
  • E. Carrera, A study of transverse normal stress effect on vibration of multilayered plates and shells, J. Sound Vib., vol. 225, no. 5, pp. 803–829, 1999.
  • M. Cinefra, M. Petrolo, G. Li, and E. Carrera, Variable kinematic shell elements for composite laminates accounting for hygrothermal effects, J. Thermal Stresses, vol. 40, no. 12, pp. 1523–1544, 2017.
  • M. Cinefra, S. Valvano, and E. Carrera, Thermal stress analysis of laminated structures by a variable kinematic MITC9 shell element, J. Thermal Stresses, vol. 39, no. 2, pp. 121–141, 2016.
  • R. Sahoo, and B. N. Singh, A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates, Compos. Struct., vol. 105, pp. 385–397, 2013.
  • B. N. Singh, and D. B. Singh, New higher order shear deformation theories for free vibration and buckling analysis of laminated and braided composite plates, Int. J. Mech. Sci., vol. 131–132, pp. 265–277, 2017.
  • C. H. Thai, S. Kulasegaram, L. V. Tran, and H. Nguyen-Xuan, Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach, Comput. Struct., vol. 141, pp. 94–112, 2014.
  • M. Karama, K. S. Afaq, and S. Mistou, Mechanical behavior of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity, Int. J. Solids Struct., vol. 40, no. 6, pp. 1525–1546, 2003.
  • H. C. Thai, A. J. M. Ferreira, T. Rabczuk, S. P. A. Bordas, and H. Nguyen-Xuan, Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory, Eur. J. Mech. A/Solids, vol. 43, pp. 89–108, 2014.
  • A. Mahi, E. A. A. Bedia, and A. Tounsi, A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates, Appl. Math. Model., vol. 39, no. 9, pp. 2489–2508, 2015.
  • K. K. Pradhan, and S. Chakraverty, Generalized power-law exponent based shear deformation theory for free vibration of functionally graded beams, Appl. Math. Comput., vol. 268, pp. 1240–1258, 2015.
  • K. Kulkarni, B. N. Singh, and D. K. Maiti, Analytical solution for bending and buckling analysis of functionally graded plates using inverse trigonometric shear deformation theory, Compos. Struct., vol. 134, pp. 147–157, 2015.
  • M. Touratier, An efficient standard plate theory, Int. J. Eng. Sci., vol. 29, pp. 601–916, 1991.
  • A. M. Zenkour, and N. A. Alghamdi, Bending analysis of functionally graded sandwich plates under the effect of mechanical and thermal loads, Mech. Adv. Mater. Struct., vol. 17, no. 6, pp. 419–432, 2010.
  • A. M. Zenkour, and N. A. Alghamdi, Thermomechanical bending response of functionally graded nonsymmetric sandwich plates, J. Sandwich Struct. Mater., vol. 12, no. 1, pp. 7–46, 2010.
  • A. M. Zenkour, M. N. M. Allam, and M. Sobby, Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on pasternak's elastic foundations, Acta Mech., vol. 212, no. 3–4, pp. 233–252, 2010.
  • A. M. Zenkour, Hygrothermal effects on the bending of angle-ply composite plates using a sinusoidal theory, Compos. Struct., vol. 94, no. 12, pp. 3685–3696, 2012.
  • A. M. Zenkour, M. N. M. Allam, and A. F. Radwan, Bending of cross-ply laminated plates resting on elastic foundations under thermo-mechanical loading, Int. J. Mech. Mater. Des., vol. 9, no. 3, pp. 239–251, 2013.
  • A. M. Zenkour, Simplified theory for hygrothermal response of angle-ply composite plates, Aiaa J., vol. 52, no. 7, pp. 1466–1473, 2014.
  • A. M. Zenkour, D. S. Mashat, and R. A. Alghanmi, Hygrothermal analysis of antisymmetric cross-ply laminates using a refined plate theory, Int. J. Mech. Mater. Des., vol. 10, no. 2, pp. 213–226, 2014.
  • A. S. Sayyad, and Y. M. Ghugal, A new shear and normal deformation theory for isotropic, transversely isotropic, laminated composite and sandwich plates, Int. J. Mech. Mater. Des., vol. 10, no. 3, pp. 247–267, 2014.
  • A. M. Zenkour, Thermal bending of layered composite plates resting on elastic foundations using four-unknown shear and normal deformations theory, Compos. Struct., vol. 122, pp. 260–270, 2015.
  • Y. Wang, and D. Wu, Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory, Aerosp. Sci. Technol., vol. 66, pp. 83–91, 2017.
  • A. Zamani, and M. R. Bidgoli, Vibration analysis of concrete foundations retrofit with NFRP layer resting on soil medium using sinusoidal shear deformation theory, Soil Dyn. Earthq. Eng., vol. 103, pp. 141–150, 2017.
  • A. S. Sayyad, and Y. M. Ghugal, Flexure of cross-ply laminated plates using equivalent single layer trigonometric shear deformation theory, Struct. Eng. Mech., vol. 51, no. 5, pp. 867–891, 2014.
  • A. S. Sayyad, and Y. M. Ghugal, On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results, Compos. Struct., vol. 129, pp. 177–201, 2015.
  • A. S. Sayyad, and Y. M. Ghugal, Bending, buckling and free vibration of laminated composite and sandwich beams: a critical review of literature, Compos. Struct., vol. 171, pp. 486–504, 2017.
  • A. S. Sayyad, and Y. M. Ghugal, On the free vibration of angle-ply laminated composite and soft core sandwich plates, J. Sandwich Struct. Mater., vol. 19, no. 6, pp. 679–711, 2017.
  • R. Sahoo, and B. N. Singh, A new trigonometric zigzag theory for static analysis of laminated composite and sandwich plates, Aerosp. Sci. Tech., vol. 35, pp. 15–28, 2014.
  • A. Gupta, and M. Talha, Recent development in modeling and analysis of functionally graded materials and structures, Prog. Aerosp. Sci., vol. 79, pp. 1–15, 2015.
  • M. F. Caliri, JrA. J. M. Ferreira, and V. Tita, A review on plate and shell theories for laminated and sandwich structures highlighting the finite element method, Compos. Struct., vol. 156, pp. 63–77, 2016.
  • E. Carrera, Historical review of zig-zag theories for multilayered plates and shells, Appl. Mech. Rev., vol. 56, no. 3, pp. 287–308, 2003.
  • E. Carrera, Cz0 requirements-models for the two dimensional analysis of multilayered structures, Compos. Struct., vol. 37, no. 3–4, pp. 373–383, 1997.
  • H. Murakami, Laminated composite plate theory with improved in-plane response, J. Appl. Mech., vol. 53, no. 3, pp. 661–666, 1986.
  • E. Carrera, On the use of the Murakami’s zig-zag function in the modeling of layered plates and shells, Comput. Struct., vol. 82, no. 7–8, pp. 541–554, 2004.
  • E. Carrera, and L. Demasi, Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 2: Numerical implementations, Int. J. Numer. Methods Eng., vol. 55, no. 3, pp. 253–291, 2002.
  • E. Carrera, A priori vs. a posteriori evaluation of transverse stresses in multilayered orthotropic plates, Compos. Struct., vol. 48, no. 4, pp. 245–260, 2000.
  • N. J. Pagano, Exact solutions for rectangular bi-directional composites, J. Compos. Mater., vol. 4, no. 1, pp. 20–34, 1970.
  • A. M. Zenkour, Three-dimensional elasticity solution for uniformly loaded cross-ply laminates and sandwich plates, J. Sandwich Struct. Mater., vol. 9, no. 3, pp. 213–238, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.