592
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and theoretical study on thermal properties of porous PDMS

, , &
Pages 784-790 | Received 10 Mar 2019, Accepted 14 Mar 2019, Published online: 05 Apr 2019

References

  • J. R. Ives, S. M. Mirsattari, and D. Jones, “Miniaturized, on-head, invasive electrode connector integrated EEG data acquisition system,” Clin. Neurophysiol., vol. 118, no. 7, pp. 1633–1638, 2007. DOI: 10.1016/j.clinph.2007.03.013.
  • J. Jeong et al., “Materials and optimized designs for human‐machine interfaces via epidermal electronics,” Adv. Mater., vol. 25, no. 47, pp. 6776–6776, 2013. DOI: 10.1002/adma.201370294.
  • R. C. Webb et al., “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater., vol. 12, no. 11, pp. 1078–1078, 2013. DOI: 10.1038/nmat3779.
  • D. H. Kim et al., “Epidermal electronics,” Science, vol. 333, no. 6044, pp. 838–843, 2011. DOI: 10.1126/science.1206157.
  • K. D. Harris, A. L. Elias, and H. J. Chung, “Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies,” J. Mater. Sci., vol. 51, no. 6, pp. 2771–2805, 2016. DOI: 10.1007/s10853-015-9643-3.
  • S. C. B. Mannsfeld et al., “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater., vol. 9, no. 10, pp. 859–864, 2010. DOI: 10.1038/nmat2834.
  • R. H. Kim et al., “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater., vol. 9, no. 11, pp. 929–937, 2010. DOI: 10.1038/nmat2879.
  • H. C. Ko et al., “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature, vol. 454, no. 7205, pp. 748–753, 2008. DOI: 10.1038/nature07113.
  • C. Lü et al., “Mechanics of tunable hemispherical electronic eye camera systems that combine rigid device elements with soft elastomers,” ASME J. Appl. Mech., vol. 80, no. 6, pp. 061022, 2013. DOI: 10.1115/1.4023962.
  • W. H. Yeo et al., “Multi‐functional electronics: multifunctional epidermal electronics printed directly onto the skin,” Adv. Mater., vol. 25, no. 20, pp. 2773–2778, 2013.
  • H. Cheng and S. Wang, “Mechanics of interfacial delamination in epidermal electronics systems,” ASME J. Appl. Mech., vol. 81, no. 4, pp. 044501, 2013. DOI: 10.1115/1.4025305.
  • X. Feng et al., “Review on stretchable and flexible inorganic electronics,” Acta Phys. Sin., vol. 63, no. 1, pp. 014201, 2014 (in Chinese).
  • W. Xu and T. J. Lu, “Flexible electronics system and their mechanical properties,” Adv. Mech., vol. 38, no. 2, pp. 137–150, 2008 (in Chinese).
  • J. H. Yuan, M. Pharr, X. Feng, J. A. Rogers, and Y. Huang, “Design of stretchable electronics against impact,” ASME J. Appl. Mech., vol. 83, no. 10, pp. 101009, 2016. DOI: 10.1115/1.4034226.
  • X. Meng, B. Liu, Y. Wang, T. Zhang, and J. Xiao, “Third-order polynomials model for analyzing multilayer hard/soft materials in flexible electronics,” J. Appl. Mech., vol. 83, no. 8, pp. 081011, 2016. DOI: 10.1115/1.4033754.
  • J. Zhao, Y. Zhang, X. Li, and M. Shi, “An improved design of the substrate of stretchable gallium arsenide photovoltaics,” ASME J. Appl. Mech., vol. 86, no. 3, pp. 031009, 2019. DOI: 10.1115/1.4042320.
  • R. L. Williams, D. J. Wilson, and N. P. Rhodes, “Stability of plasma-treated silicone rubber and its influence on the interfacial aspects of blood compatibility,” Biomaterials, vol. 25, no. 19, pp. 4659–4673, 2004. DOI: 10.1016/j.biomaterials.2003.12.010.
  • S. Nie, C. Zhang, and J. Song, “Thermal management of epidermal electronic devices/skin system considering insensible sweating,” Sci. Rep., vol. 8, no. 1, pp. 14121, 2018.
  • H. Y. Wang, T. Kobayashi, H. Saitoh, and N. Fujii, “Porous polydimethylsiloxane membranes for enzyme immobilization,” J. Appl. Polym. Sci., vol. 60, no. 13, pp. 2339–2346, 1996. DOI: 10.1002/(SICI)1097-4628(19960627)60:13<2339::AID-APP5>3.0.CO;2-F.
  • M. Juchniewicz et al., “Porous crosslinked PDMS-microchannels coatings,” Sens. Actuators B: Chem., vol. 126, no. 1, pp. 68–72, 2007. DOI: 10.1016/j.snb.2006.10.041.
  • M. T. Khorasani, H. Mirzadeh, and Z. Kermani, “Wettability of porous polydimethylsiloxane surface: morphology study,” Appl. Surf. Sci., vol. 242, no. 3–4, pp. 339–345, 2005. DOI: 10.1016/j.apsusc.2004.08.035.
  • Q. Li, T. Duan, J. Shao, and H. Yu, “Fabrication method for structured porous polydimethylsiloxane (PDMS),” J. Mater. Sci., vol. 53, no. 16, pp. 1–10, 2018.
  • S. Choi, H. Lee, R. Ghaffari, T. Hyeon, and D. H. Kim, “Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials,” Adv. Mater., vol. 28, no. 22, pp. 4203–4218, 2016. DOI: 10.1002/adma.201504150.
  • J. Song, X. Feng, and Y. Huang, “Mechanics and thermal management of stretchable inorganic electronics,” Natl. Sci. Rev., vol. 3, no. 1, pp. 128–143, 2016. DOI: 10.1093/nsr/nwv078.
  • Y. Y. Gao, Y. H. Li, R. Li, and J. Z. Song, “An accurate thermomechanical model for laser-driven microtransfer printing,” ASME J. Appl. Mech., vol. 84, no. 6, pp. 064501, 2017. DOI: 10.1115/1.4036257.
  • T. Luo, K. Esfarjani, J. Shiomi, A. Henry, and G. Chen, “Molecular dynamics simulation of thermal energy transport in polydimethylsiloxane (PDMS),” J. Appl. Phys., vol. 109, no. 7, pp. 074321, 2011. DOI: 10.1063/1.3569862.
  • N. Al-Khudary et al., “Measurement of the thermal conductivity of polydimethylsiloxane polymer using the three omega method,” Key Eng. Mater., vol. 613, pp. 259–266, 2014. DOI: 10.4028/www.scientific.net/KEM.613.259.
  • E. Kamseu et al., “Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements,” J. Eur. Ceram. Soc., vol. 32, no. 8, pp. 1593–1603, 2012. DOI: 10.1016/j.jeurceramsoc.2011.12.030.
  • X. Huai, W. Wang, and Z. Li, “Analysis of the effective thermal conductivity of fractal porous media,” Appl. Therm. Eng., vol. 27, no. 17–18, pp. 2815–2821, 2007. DOI: 10.1016/j.applthermaleng.2007.01.031.
  • A. Bouguerra, A. A. Aït-Mokhtar, O. Amiri, and M. B. Diop, “Measurement of thermal conductivity, thermal diffusivity and heat capacity of highly porous building materials using transient plane source technique,” Int. Commun. Heat Mass Transf., vol. 28, no. 8, pp. 1065–1078, 2001. DOI: 10.1016/S0735-1933(01)00310-4.
  • C. Huang, Z. Bian, C. Fang, X. Zhou, and J. Song, “Experimental and theoretical study on mechanical properties of porous PDMS,” ASME J. Appl. Mech., vol. 85, no. 4, pp. 041009, 2018. DOI: 10.1115/1.4039041.
  • B. Hassani and E. Hinton, “A review of homogenization and topology optimization I—homogenization theory for media with periodic structure,” Comput. Struct., vol. 69, no. 6, pp. 707–717, 1998. DOI: 10.1016/S0045-7949(98)00131-X.
  • G. Cheng and S. Liu, “Prediction of thermal conductivity of unidirectional fiber reinforced composites,” Acta Mater. Compos. Sin., vol. 13, no. 1, pp. 78–85, 1996 (in Chinese).
  • H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. New York: Oxford University Press, 1959, pp. 101.
  • W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys., vol. 32, no. 9, pp. 1679–1684, 1961. DOI: 10.1063/1.1728417.
  • Y. Zhang, S. Shang, and Y. Liang, “A new algorithm of asymptotic homogenization method for predicting the effective thermal conductivity and its implementation of periodic composite materials,” Acta Mater. Compos. Sin., vol. 35, no. 1, pp. 208–217, 2018 (in Chinese).
  • C. C. Mei, J. L. Auriault, and C. O. Ng, “Some applications of the homogenization theory,” Adv. Appl. Mech., vol. 32, no. 3, pp. 277–348, 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.