180
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Size-dependent analysis of thermoelastic damping in electrically actuated microbeams

&
Pages 952-962 | Received 17 Oct 2018, Accepted 25 Apr 2019, Published online: 22 May 2019

References

  • W. D. Nix, “Mechanical properties of thin films,” Metall. Trans. A, vol. 20, no. 11, pp. 2217, 1989. DOI: 10.1007/BF02666659.
  • N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson, “Strain gradient plasticity: theory and experiment,” Acta Metall. Mater., vol. 42, no. 2, pp. 475–487, 1994. DOI: 10.1016/0956-7151(94)90502-9.
  • J. S. Stölken, and A. G. Evans, “A microbend test method for measuring the plasticity length scale,” Acta Mater., vol. 46, no. 14, pp. 5109–5115, 1998. DOI: 10.1016/S1359-6454(98)00153-0.
  • A. C. Chong, and D. C. Lam, “Strain gradient plasticity effect in indentation hardness of polymers,” J. Mater. Res., vol. 14, no. 10, pp. 4103–4110, 1999. DOI: 10.1557/JMR.1999.0554.
  • F. A. C. M. Yang, A. C. M. Chong, D. C. C. Lam, and P. Tong, “Couple stress based strain gradient theory for elasticity,” Int. J. Solids Struct., vol. 39, no. 10, pp. 2731–2743, 2002. DOI: 10.1016/S0020-7683(02)00152-X.
  • M. Asghari, “Geometrically nonlinear micro-plate formulation based on the modified couple stress theory,” Int. J. Eng. Sci., vol. 51, pp. 292–309, 2012. DOI: 10.1016/j.ijengsci.2011.08.013.
  • M. H. Ghayesh, M. Amabili, and H. Farokhi, “Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams,” Int. J. Eng. Sci., vol. 71, pp. 1–14, 2013. DOI: 10.1016/j.ijengsci.2013.04.003.
  • M. Asghari, and E. Taati, “A size-dependent model for functionally graded micro-plates for mechanical analyses,” J. Vib. Control, vol. 19, no. 11, pp. 1614–1632, 2013. DOI: 10.1177/1077546312442563.
  • J. Kim, and J. N. Reddy, “A general third-order theory of functionally graded plates with modified couple stress effect and the von Kármán nonlinearity: Theory and finite element analysis,” Acta Mech., vol. 226, no. 9, pp. 2973–2998, 2015. DOI: 10.1007/s00707-015-1370-y.
  • M. H. Ghayesh, H. Farokhi, and G. Alici, “Size-dependent performance of microgyroscopes,” Int. J. Eng. Sci., vol. 100, pp. 99–111, 2016. DOI: 10.1016/j.ijengsci.2015.11.003.
  • J. N. Reddy, J. Romanoff, and J. A. Loya, “Nonlinear finite element analysis of functionally graded circular plates with modified couple stress theory,” Eur. J. Mech.-A/Solids, vol. 56, pp. 92–104, 2016. DOI: 10.1016/j.euromechsol.2015.11.001.
  • M. Asghari, and M. Hashemi, “The couple stress-based nonlinear coupled three-dimensional vibration analysis of microspinning Rayleigh beams,” Nonlinear Dyn., vol. 87, no. 2, pp. 1315–1334, 2017. DOI: 10.1007/s11071-016-3116-3.
  • M. Sobhy, and A. M. Zenkour, “The modified couple stress model for bending of normal deformable viscoelastic nanobeams resting on visco-Pasternak foundations,” Mech. Adv. Mater. Struct., pp. 1–14, 2018. DOI: 10.1080/15376494.2018.1482579.
  • M. H. Ghayesh, “Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams,” Appl. Math. Model., vol. 59, pp. 583–596, 2018. DOI: 10.1016/j.apm.2018.02.017.
  • E. Taati, “On buckling and post-buckling behavior of functionally graded micro-beams in thermal environment,” Int. J. Eng. Sci., vol. 128, pp. 63–78, 2018. DOI: 10.1016/j.ijengsci.2018.03.010.
  • H. C. Nathanson, W. E. Newell, R. A. Wickstrom, and J. R. Davis, “The resonant gate transistor,” IEEE Trans. Electron Dev., vol. 14, no. 3, pp. 117–133, 1967. DOI: 10.1109/T-ED.1967.15912.
  • G. I. Taylor, “The coalescence of closely spaced drops when they are at different electric potentials,” Proc. R. Soc. Lond. A, vol. 306, no. 1487, pp. 423–434, 1968.
  • M. Rahaeifard, M. H. Kahrobaiyan, M. Asghari, and M. T. Ahmadian, “Static pull-in analysis of microcantilevers based on the modified couple stress theory,” Sens. Actuators A Phys., vol. 171, no. 2, pp. 370–374, 2011. DOI: 10.1016/j.sna.2011.08.025.
  • S. Kong, “Size effect on pull-in behavior of electrostatically actuated microbeams based on a modified couple stress theory,” Appl. Math. Model., vol. 37, no. 12–13, pp. 7481–7488, 2013. DOI: 10.1016/j.apm.2013.02.024.
  • M. Rahaeifard, M. T. Ahmadian, and K. Firoozbakhsh, “Vibration analysis of electrostatically actuated nonlinear microbridges based on the modified couple stress theory,” Appl. Math. Model., vol. 39, no. 21, pp. 6694–6704, 2015. DOI: 10.1016/j.apm.2015.02.020.
  • Tahani, M. Batra, R. C., and Askari A. R. “Size-dependent free vibrations of electrostatically predeformed functionally graded micro-cantilevers.” in IOP Conference Series: Materials Science and Engineering, vol. 87, no. 1. IOP Publishing, 2015, p. 012117 DOI: 10.1088/1757-899X/87/1/012117.
  • M. Rahaeifard, and M. Mojahedi, “Size-dependent dynamic behavior of electrostatically actuated microaccelerometers under mechanical shock,” Int. J. Struct. Stab. Dyn., vol. 17, no. 04, pp. 1750042, 2017. DOI: 10.1142/S0219455417500420.
  • B. A. Boley, and J. H. Weiner Theory of Thermal Stresses. Courier Corporation, 2012.
  • H. W. Lord, and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, vol. 15, no. 5, pp. 299–309, 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • D. Y. Tzou. Macro-to Microscale Heat Transfer: The Lagging Behavior. John Wiley & Sons, 2014.
  • C. Zener, “Internal friction in solids. I. Theory of internal friction in reeds,” Phys. Rev., vol. 52, no. 3, pp. 230, 1937. DOI: 10.1103/PhysRev.52.230.
  • C. Zener, “Internal friction in solids II. General theory of thermoelastic internal friction,” Phys. Rev., vol. 53, no. 1, pp. 90, 1938. DOI: 10.1103/PhysRev.53.90.
  • Roszhart, T. V. (1990, June). “The effect of thermoelastic internal friction on the Q of micromachined silicon resonators,” In Solid-State Sensor and Actuator Workshop, 1990. 4th Technical Digest., IEEE, pp. 13–16.
  • S. Evoy, A. Olkhovets, D. W. Carr, J. M. Parpia, and H. G. Craighead, “Temperature-dependent internal friction in silicon nanoelectromechanical systems,” MRS Online Proc. Library Arch., vol. 657, 2000.
  • J. Yang, T. Ono, and M. Esashi, “Energy dissipation in submicrometer thick single-crystal silicon cantilevers,” J. Microelectromech. Syst., vol. 11, no. 6, pp. 775–783, 2002.
  • A. Duwel, R. N. Candler, T. W. Kenny, and M. Varghese, “Engineering MEMS resonators with low thermoelastic damping,” J. Microelectromech. Syst., vol. 15, no. 6, pp. 1437–1445, 2006. DOI: 10.1109/JMEMS.2006.883573.
  • R. Lifshitz, and M. L. Roukes, “Thermoelastic damping in micro-and nanomechanical systems,” Phys. Rev. B, vol. 61, no. 8, pp. 5600, 2000. DOI: 10.1103/PhysRevB.61.5600.
  • G. Rezazadeh, A. S. Vahdat, S. Tayefeh-Rezaei, and C. Cetinkaya, “Thermoelastic damping in a micro-beam resonator using modified couple stress theory,” Acta Mech., vol. 223, no. 6, pp. 1137–1152, 2012. DOI: 10.1007/s00707-012-0622-3.
  • E. Taati, M. M. Najafabadi, and H. B. Tabrizi, “Size-dependent generalized thermoelasticity model for Timoshenko microbeams,” Acta Mech., vol. 225, no. 7, pp. 1823–1842, 2014. DOI: 10.1007/s00707-013-1027-7.
  • E. K. Kakhki, S. M. Hosseini, and M. Tahani, “An analytical solution for thermoelastic damping in a micro-beam based on generalized theory of thermoelasticity and modified couple stress theory,” Appl. Math. Model., vol. 40, no. 4, pp. 3164–3174, 2016. DOI: 10.1016/j.apm.2015.10.019.
  • Z. Y. Zhong, W. M. Zhang, G. Meng, and M. Y. Wang, “Thermoelastic damping in the size-dependent microplate resonators based on modified couple stress theory,” J. Microelectromech. Syst., vol. 24, no. 2, pp. 431–445, 2015. DOI: 10.1109/JMEMS.2014.2332757.
  • V. Borjalilou, and M. Asghari, “Small-scale analysis of plates with thermoelastic damping based on the modified couple stress theory and the dual-phase-lag heat conduction model,” Acta Mech., vol. 229, no. 9, pp. 3869–3884, 2018. DOI: 10.1007/s00707-018-2197-0.
  • V. Borjalilou, M. Asghari, and E. Bagheri, “Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model,” Journal of Thermal Stresses, pp. 1–14, 2019. DOI: 10.1080/01495739.2019.1590168.
  • V. Borjalilou, and M. Asghari, “Size-dependent strain gradient-based thermoelastic damping in micro-beams utilizing a generalized thermoelasticity theory,” Int. J. Appl. Mech., vol. 11, no. 01, pp. 1950007, 2019. DOI: 10.1142/S1758825119500078.
  • A. H. Nayfeh, and M. I. Younis, “Modeling and simulations of thermoelastic damping in microplates,” J. Micromech. Microeng., vol. 14, no. 12, pp. 1711, 2004. DOI: 10.1088/0960-1317/14/12/016.
  • S. K. De, and N. R. Aluru, “Theory of thermoelastic damping in electrostatically actuated microstructures,” Phys. Rev. B, vol. 74, no. 14, pp. 144305, 2006.
  • P. Belardinelli, M. Brocchini, L. Demeio, and S. Lenci, “Dynamical characteristics of an electrically actuated microbeam under the effects of squeeze-film and thermoelastic damping,” Int. J. Eng. Sci., vol. 69, pp. 16–32, 2013. DOI: 10.1016/j.ijengsci.2013.03.011.
  • P. Belardinelli, S. Lenci, and L. Demeio, “Vibration frequency analysis of an electrically-actuated microbeam resonator accounting for thermoelastic coupling effects,” Int. J. Dyn. Control, vol. 3, no. 2, pp. 157–172, 2015. DOI: 10.1007/s40435-014-0132-3.
  • J. M. Huang, K. M. Liew, C. H. Wong, S. Rajendran, M. J. Tan, and A. Q. Liu, “Mechanical design and optimization of capacitive micromachined switch,” Sens. Actuators A Phys. vol. 93, no. 3, pp. 273–285, 2001. DOI: 10.1016/S0924-4247(01)00662-8.
  • R. C. Batra, M. Porfiri, and D. Spinello, “Vibrations of narrow microbeams predeformed by an electric field,” J. Sound Vib., vol. 309, no. 3-5, pp. 600–612, 2008. DOI: 10.1016/j.jsv.2007.07.030.
  • E. M. Abdel-Rahman, M. I. Younis, and A. H. Nayfeh, “Characterization of the mechanical behavior of an electrically actuated microbeam,” J. Micromech. Microeng., vol. 12, no. 6, pp. 759, 2002. DOI: 10.1088/0960-1317/12/6/306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.