268
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Viscoelastic behavior of carbon nanotube-enriched epoxy matrix hybrid composites reinforced with unidirectional graphite fibers

&
Pages 1588-1603 | Received 13 Aug 2019, Accepted 15 Nov 2019, Published online: 28 Nov 2019

References

  • I. Tsukrov, B. Drach, and T. S. Gross, “Effective stiffness and thermal expansion coefficients of unidirectional composites with fibers surrounded by cylindrically orthotropic matrix layers,” Int. J. Eng. Sci., vol. 58, pp. 129–143, 2012. DOI: 10.1016/j.ijengsci.2012.03.032.
  • C. Ganesan and P. S. Joanna, “Modeling the residual strength and fatigue life of carbon fiber composites under constant amplitude loading,” Mech. Adv. Mater. Struct., pp. 1–9, 2018. DOI: 10.1080/15376494.2018.1526353.
  • B. F. Sørensen and S. Goutianos, “Micromechanical model for prediction of the fatigue limit for unidirectional fibre composites,” Mech. Mater., vol. 131, pp. 169–187, 2019. DOI: 10.1016/j.mechmat.2019.01.023.
  • D. Beicha, T. Kanit, Y. Brunet, A. Imad, A. El Moumen, and Y. Khelfaoui, “Effective transverse elastic properties of unidirectional fiber reinforced composites,” Mech. Mater., vol. 102, pp. 47–53, 2016. DOI: 10.1016/j.mechmat.2016.08.010.
  • M. K. Hassanzadeh-Aghdam, R. Ansari, and A. Darvizeh, “Micromechanical modeling of thermal expansion coefficients for unidirectional glass fiber-reinforced polyimide composites containing silica nanoparticles,” Composites A Appl. Sci. Manuf., vol. 96, pp. 110–121, 2017. DOI: 10.1016/j.compositesa.2017.02.015.
  • S. P. Sharma and S. C. Lakkad, “Impact behavior and fractographic study of carbon nanotubes grafted carbon fiber-reinforced epoxy matrix multi-scale hybrid composites,” Composites A Appl. Sci. Manuf., vol. 69, pp. 124–131, 2015. DOI: 10.1016/j.compositesa.2014.11.005.
  • M. Ahmadi, R. Ansari, and M. K. Hassanzadeh-Aghdam, “Low velocity impact analysis of beams made of short carbon fiber/carbon nanotube-polymer composite: A hierarchical finite element approach,” Mech. Adv. Mater. Struct., vol. 26, no. 13, pp. 1104–1114, 2019.
  • Z. Eslami, F. Yazdani, and M. A. Mirzapour, “Thermal and mechanical properties of phenolic-based composites reinforced by carbon fibres and multiwall carbon nanotubes,” Composites A Appl. Sci. Manuf., vol. 72, pp. 22–31, 2015. DOI: 10.1016/j.compositesa.2015.01.015.
  • Q. Li, J. S. Church, M. Naebe, and B. L. Fox, “A systematic investigation into a novel method for preparing carbon fibre-carbon nanotube hybrid structures,” Composites A Appl. Sci. Manuf., vol. 90, pp. 174–185, 2016. DOI: 10.1016/j.compositesa.2016.05.004.
  • D. Kumar and K. K. Singh, “Investigation of delamination and surface quality of machined holes in drilling of multiwalled carbon nanotube doped epoxy/carbon fiber reinforced polymer nanocomposite,” Proc. Inst. Mech. Eng. L J. Mater. Des. Appl., vol. 233, no. 4, pp. 647–663, 2019. DOI: 10.1177/1464420717692369.
  • K. B. Mustapha and Z. W. Zhong, “Stability of single-walled carbon nanotubes and single-walled carbon nanocones under self-weight and an axial tip force,” Int. J. Eng. Sci., vol. 50, no. 1, pp. 268–278, 2012. DOI: 10.1016/j.ijengsci.2010.12.006.
  • Y. Li, Q. Wang, and S. Wang, “A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: Molecular dynamics simulations,” Composites B Eng., vol. 160, pp. 348–361, 2019. DOI: 10.1016/j.compositesb.2018.12.026.
  • Y. Zare, “Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly–Tyson theory,” Mech. Mater., vol. 85, pp. 1–6, 2015. DOI: 10.1016/j.mechmat.2015.02.002.
  • L. Nazarenko, A. Y. Chirkov, H. Stolarski, and H. Altenbach, “On modeling of carbon nanotubes reinforced materials and on influence of carbon nanotubes spatial distribution on mechanical behavior of structural elements,” Int. J. Eng. Sci., vol. 143, pp. 1–13, 2019. DOI: 10.1016/j.ijengsci.2019.06.008.
  • A. Negi, G. Bhardwaj, J. S. Saini, and N. Grover, “Crack growth analysis of carbon nanotube reinforced polymer nanocomposite using extended finite element method,” Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., vol. 233, no. 5, pp. 1750–1770, 2019. DOI: 10.1177/0954406218776034.
  • S. I. Kundalwal and M. C. Ray, “Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite,” Composites B Eng., vol. 57, pp. 199–209, 2014. DOI: 10.1016/j.compositesb.2013.10.003.
  • Y. Jia, Z. Chen, and W. Yan, “A numerical study on carbon nanotube–hybridized carbon fibre pullout,” Composites Sci. Technol., vol. 91, pp. 38–44, 2014. DOI: 10.1016/j.compscitech.2013.11.020.
  • S. I. Kundalwal, and M. C. Ray, “Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes,” Mech. Mater., vol. 53, pp. 47–60, 2012. DOI: 10.1016/j.mechmat.2012.05.008.
  • M. M. Shokrieh, A. Daneshvar, and S. Akbari, “Reduction of thermal residual stresses of laminated polymer composites by addition of carbon nanotubes,” Mater. Des., vol. 53, pp. 209–216, 2014. DOI: 10.1016/j.matdes.2013.07.007.
  • I. A. Kazakov, A. N. Krasnovskii, and P. S. Kishuk, “The influence of randomly oriented CNTs on the elastic properties of unidirectionally aligned composites,” Mech. Mater., vol. 134, pp. 54–60, 2019. DOI: 10.1016/j.mechmat.2019.04.002.
  • D. L. Shi, X. Q. Feng, Y. Y. Huang, K. C. Hwang, and H. Gao, “The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites,” Trans. ASME J. Eng. Mater. Technol., vol. 126, no. 3, pp. 250–257, 2004. DOI: 10.1115/1.1751182.
  • M. Hasanzadeh, R. Ansari, and M. K. Hassanzadeh-Aghdam, “Micromechanical elastoplastic analysis of randomly oriented nonstraight carbon nanotube-reinforced polymer nanocomposites,” Mech. Adv. Mater. Struct., vol. 26, pp. 1–11, 2018. DOI: 10.1080/15376494.2018.1444227.
  • S. I. Kundalwal, R. S. Kumar, and M. C. Ray, “Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes,” Int. J. Heat Mass Transf., vol. 72, pp. 440–451, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.01.025.
  • A. A. Skandani and M. Al-Haik, “Viscoplastic characterization and modeling of hybrid carbon fiber/carbon nanotubes reinforced composites,” Composites B Eng., vol. 99, pp. 63–74, 2016.
  • A. Y. Boroujeni, M. Tehrani, A. J. Nelson, and M. Al-Haik, “Hybrid carbon nanotube–carbon fiber composites with improved in-plane mechanical properties,” Composites B Eng., vol. 66, pp. 475–483, 2014. DOI: 10.1016/j.compositesb.2014.06.010.
  • J. L. Tsai, S. H. Tzeng, and Y. T. Chiu, “Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation,” Composites B Eng., vol. 41, no. 1, pp. 106–115, 2010. DOI: 10.1016/j.compositesb.2009.06.003.
  • C. Wei, “Adhesion and reinforcement in carbon nanotube polymer composite,” Appl. Phys. Lett., vol. 88, no. 9, pp. 093108, 2006. DOI: 10.1063/1.2181188.
  • F. T. Fisher, R. D. Bradshaw, and L. C. Brinson, “Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties,” Composites Sci. Technol., vol. 63, no. 11, pp. 1689–1703, 2003. DOI: 10.1016/S0266-3538(03)00069-1.
  • D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Appl. Phys. Lett., vol. 76, no. 20, pp. 2868–2870, 2000. DOI: 10.1063/1.126500.
  • S. I. Kundalwal and S. A. Meguid, “Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites,” Eur. J. Mech. A Solids, vol. 64, pp. 69–84, 2017. DOI: 10.1016/j.euromechsol.2017.01.014.
  • M. Hasanzadeh, R. Ansari, and M. K. Hassanzadeh-Aghdam, “Evaluation of effective properties of piezoelectric hybrid composites containing carbon nanotubes,” Mech. Mater., vol. 129, pp. 63–79, 2019. DOI: 10.1016/j.mechmat.2018.11.003.
  • Z. Hashin, “Viscoelastic fiber reinforced materials,” AIAA J., vol. 4, no. 8, pp. 1411–1417, 1966. DOI: 10.2514/3.3686.
  • K. Li, X. L. Gao, and A. K. Roy, “Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites,” Mech. Adv. Mater. Struct., vol. 13, no. 4, pp. 317–328, 2006. DOI: 10.1080/15376490600583931.
  • N. Laws and R. McLaughlin, “Self-consistent estimates for the viscoelastic creep compliances of composite materials,” Proc. Roy. Soc. Lond. A. Math. Phys. Sci., vol. 359, no. 1697, pp. 251–273, 1978. DOI: 10.1098/rspa.1978.0041.
  • C. Donolato, “Analytical and numerical inversion of the Laplace-Carson transform by a differential method,” Comput. Phys. Commun., vol. 145, no. 2, pp. 298–309, 2002. DOI: 10.1016/S0010-4655(02)00281-3.
  • Y. M. Wang and G. J. Weng, “The influence of inclusion shape on the overall viscoelastic behavior of composites,” Trans. ASME. J. Appl. Mech., vol. 59, no. 3, pp. 510–518, 1992. DOI: 10.1115/1.2893753.
  • T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., vol. 21, no. 5, pp. 571–574, 1973. DOI: 10.1016/0001-6160(73)90064-3.
  • J. Aboudi, “Micromechanical analysis of composites by the method of cells,” Appl. Mech. Rev., vol. 42, no. 7, pp. 193–221, 1989. DOI: 10.1115/1.3152428.
  • J. Aboudi, “Micromechanical analysis of composites by the method of cells-update,” Appl. Mech. Rev., vol. 49, no. 10S, pp. S83–S91, 1996. DOI: 10.1115/1.3101981.
  • J. Aboudi, S. M. Arnold, and B. A. Bednarcyk, (2012). Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach, Butterworth-Heinemann, USA.
  • M. M. Aghdam and A. Dezhsetan, “Micromechanics based analysis of randomly distributed fiber reinforced composites using simplified unit cell model,” Composite Struct., vol. 71, no. 3-4, pp. 327–332, 2005. DOI: 10.1016/j.compstruct.2005.09.018.
  • K. Prashantha, J. Soulestin, M. F. Lacrampe, P. Krawczak, G. Dupin, and M. Claes, “Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties,” Composites Sci. Technol., vol. 69, no. 11-12, pp. 1756–1763, 2009. DOI: 10.1016/j.compscitech.2008.10.005.
  • P. Barai and G. J. Weng, “A theory of plasticity for carbon nanotube reinforced composites,” Int. J. Plast., vol. 27, no. 4, pp. 539–559, 2011. DOI: 10.1016/j.ijplas.2010.08.006.
  • S. I. Kundalwal and S. A. Meguid, “Micromechanics modelling of the effective thermoelastic response of nano-tailored composites,” Eur. J. Mech. A Solids, vol. 53, pp. 241–253, 2015. DOI: 10.1016/j.euromechsol.2015.05.008.
  • S. Xu, J. Liu, and Q. Li, “Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste,” Constr. Build. Mater., vol. 76, pp. 16–23, 2015. DOI: 10.1016/j.conbuildmat.2014.11.049.
  • H. M. Hsiao and I. M. Daniel, “Elastic properties of composites with fiber waviness,” Composites A Appl. Sci. Manuf., vol. 27, no. 10, pp. 931–941, 1996. DOI: 10.1016/1359-835X(96)00034-6.
  • J. S. Snipes, C. T. Robinson, and S. C. Baxter, “Effects of scale and interface on the three-dimensional micromechanics of polymer nanocomposites,” J. Composite Mater., vol. 45, no. 24, pp. 2537–2546, 2011. DOI: 10.1177/0021998311401104.
  • R. M. Haj-Ali and A. H. Muliana, “A multi-scale constitutive formulation for the nonlinear viscoelastic analysis of laminated composite materials and structures,” Int. J. Solids Struct., vol. 41, no. 13, pp. 3461–3490, 2004. DOI: 10.1016/j.ijsolstr.2004.02.008.
  • R. N. Yancey and M. J. Pindera, “Micromechanical analysis of the creep response of unidirectional composites,” Trans. ASME J. Eng. Mater. Technol., vol. 112, no. 2, pp. 157–163, 1990. DOI: 10.1115/1.2903302.
  • Y. Jia, K. Peng, X. L. Gong, and Z. Zhang, “Creep and recovery of polypropylene/carbon nanotube composites,” Int. J. Plast., vol. 27, no. 8, pp. 1239–1251, 2011.
  • Y. Pan, G. J. Weng, S. A. Meguid, W. S. Bao, Z. H. Zhu, and A. M. S. Hamouda, “Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites,” Mech. Mater., vol. 58, pp. 1–11, 2013. DOI: 10.1016/j.mechmat.2012.10.015.
  • J. N. Dastgerdi, G. Marquis, and M. Salimi, “The effect of nanotubes waviness on mechanical properties of CNT/SMP composites,” Composites Sci. Technol., vol. 86, pp. 164–169, 2013. DOI: 10.1016/j.compscitech.2013.07.012.
  • S. Rahmanian, A. R. Suraya, M. A. Shazed, R. Zahari, and E. S. Zainudin, “Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers,” Mater. Des., vol. 60, pp. 34–40, 2014. DOI: 10.1016/j.matdes.2014.03.039.
  • M. Kulkarni, D. Carnahan, K. Kulkarni, D. Qian, and J. L. Abot, “Elastic response of a carbon nanotube fiber reinforced polymeric composite: A numerical and experimental study,” Composites B Eng., vol. 41, no. 5, pp. 414–421, 2010. DOI: 10.1016/j.compositesb.2009.09.003.
  • M. Shabaze, P. K. Sahoo, and V. J. Guptha, “Multiscale material modelling and analysis of carbon fiber/MWCNT/epoxy composites to predict effective elastic constants,” Mater. Today Proc. 2019. DOI: 10.1016/j.matpr.2019.07.647.
  • K. Yanase, S. Moriyama, and J. W. Ju, “Effects of CNT waviness on the effective elastic responses of CNT-reinforced polymer composites,” Acta Mech., vol. 224, no. 7, pp. 1351–1364, 2013. DOI: 10.1007/s00707-013-0808-3.
  • S. I. Kundalwal and M. C. Ray, “Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method,” Eur. J. Mech. A Solids, vol. 36, pp. 191–203, 2012. DOI: 10.1016/j.euromechsol.2012.03.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.