353
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Popular benchmarks of nonlinear shell analysis solved by 1D and 2D CUF-based finite elements

, ORCID Icon, ORCID Icon &
Pages 1098-1109 | Received 29 Nov 2019, Accepted 06 Feb 2020, Published online: 27 Feb 2020

References

  • L. Euler, De Curvis Elasticis, Bousquet, Lausanne and Geneva, 1744.
  • S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philos Mag., vol. 41, no. 245, pp. 744–746, 1921. DOI: 10.1080/14786442108636264.
  • S. P. Timoshenko, On the transverse vibrations of bars of uniform cross-section, Philos Mag., vol. 43, no. 253, pp. 125–131, 1922. DOI: 10.1080/14786442208633855.
  • V. V. Novozhilov, Theory of Elasticity, Pergamon press, Pergamon, Elmsford, 1961.
  • E. Carrera, A. Pagani, M. Petrolo, and E. Zappino, Recent developments on refined theories for beams with applications, Mech. Eng. Rev., vol. 2, no. 2, pp. 14–00298, 2015. DOI: 10.1299/mer.14-00298.
  • R. K. Kapania and S. Raciti, Recent advances in analysis of laminated beams and plates. Part I: Shear effects and buckling, AIAA J., vol. 27, no. 7, pp. 923–935, 1989. DOI: 10.2514/3.10202.
  • R. K. Kapania and S. Raciti, Recent advances in analysis of laminated beams and plates. Part II: Vibrations and wave propagation, AIAA J., vol. 27, no. 7, pp. 935–946, 1989. DOI: 10.2514/3.59909.
  • J. N. Reddy, On locking-free shear deformable beam finite elements, Comput. Methods Appl. Mech. Eng., vol. 149, no. 1–4, pp. 113–132, 1997. DOI: 10.1016/S0045-7825(97)00075-3.
  • J. Petrolito, Stiffness analysis of beams using a higher-order theory, Comput. Struct., vol. 55, no. 1, pp. 33–39, 1995. DOI: 10.1016/0045-7949(94)00505-W.
  • M. Eisenberger, An exact high order beam element, Comput. Struct., vol. 81, no. 3, pp. 147–152, 2003. DOI: 10.1016/S0045-7949(02)00438-8.
  • S. Rendek and I. Baláž, Distortion of thin-walled beams, Thin-Walled Structures., vol. 42, no. 2, pp. 255–277, 2004. DOI: 10.1016/S0263-8231(03)00059-4.
  • J. Frischkorn and S. Reese, A solid-beam finite element and non-linear constitutive modelling, Comput Methods Appl Mech Eng, vol. 265, pp. 195–212, 2013. DOI: 10.1016/j.cma.2013.06.009.
  • R. F. Vieira, F. B. E. Virtuoso, and E. B. R. Pereira, A higher order beam model for thin-walled structures with in-plane rigid cross-sections, Eng. Struct., vol. 84, pp. 1–18, 2015. DOI: 10.1016/j.engstruct.2014.11.008.
  • A. L. Cauchy, Sur l’equilibre et le mouvement d’une plaque solide, Exerc. Math., vol. 3, pp. 328–355, 1828.
  • S. D. Poisson, Mémoire sur l’équilibre et le mouvement des corps élastiques, Mm. Acad. Sci. Inst. Fr., vol. 8, pp. 357–570, 1829.
  • G. Kirchoff, Uber das gleichgewicht und die bewegung einer elastischen scheibe, J. Reine Angew. Math., vol. 40, pp. 51–88, 1850.
  • A. E. H. Love, The Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, 2013.
  • E. Reissner, The effect of transverse shear deformation on the bending of elastic plates, J. Appl. Mech., vol. 12, pp. 69–76, 1945.
  • RaymondD. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, J. Appl. Mech., vol. 18, pp. 1031–1036, 1951.
  • J. N. Reddy, A simple higher-order theory for laminated composite plates, J. Appl. Mech., vol. 51, no. 4, pp. 745–752, 1984. DOI: 10.1115/1.3167719.
  • J. N. Reddy and C. F. Liu, A higher-order shear deformation theory of laminated elastic shells, Int. J. Eng. Sci., vol. 23, no. 3, pp. 319–330, 1985. DOI: 10.1016/0020-7225(85)90051-5.
  • S. A. Kulkarni and K. M. Bajoria, Finite element modeling of smart plates/shells using higher order shear deformation theory, Compos. Struct., vol. 62, no. 1, pp. 41–50, 2003. DOI: 10.1016/S0263-8223(03)00082-5.
  • K. M. Liew, C. W. Lim, and S. Kitipornchai, Vibration of Shallow Shells: a Review with Bibliography, Appl. Mech. Rev., vol. 50, no. 8, pp. 431–444, 1997. DOI: 10.1115/1.3101731.
  • T. J. R. Hughes and W. K. Liu, Nonlinear finite element analysis of shells: Part I. Three-dimensional shells, Comput. Methods Appl. Mech. Eng., vol. 26, no. 3, pp. 331–362, 1981. DOI: 10.1016/0045-7825(81)90121-3.
  • K. S. Surana, Geometrically nonlinear formulation for the curved shell elements, Int. J. Numer. Meth. Eng., vol. 19, no. 4, pp. 581–615, 1983. DOI: 10.1002/nme.1620190409.
  • Thomas J. R. Hughes and E. Carnoy, Nonlinear finite element shell formulation accounting for large membrane strains, Comput. Methods Appl. Mech. Eng., vol. 39, no. 1, pp. 69–82, 1983. DOI: 10.1016/0045-7825(83)90074-9.
  • H. C. Park, C. Cho, and S. W. Lee, An efficient assumed strain element model with six dof per node for geometrically non-linear shells, Int. J. Numer. Meth. Eng., vol. 38, no. 24, pp. 4101–4122, 1995. DOI: 10.1002/nme.1620382403.
  • S. J. Lee and W. Kanok-Nukulchai, A nine-node assumed strain finite element for large-deformation analysis of laminated shells, Int. J. Numer. Meth. Eng., vol. 42, no. 5, pp. 777–798, 1998. DOI: 10.1002/(SICI)1097-0207(19980715)42:5<777::AID-NME365>3.0.CO;2-P.
  • E. Providas and M. A. Kattis, A simple finite element model for the geometrically nonlinear analysis of thin shells, Comput. Mech., vol. 24, no. 2, pp. 127–137, 1999. DOI: 10.1007/s004660050445.
  • E. Carrera, G. Giunta, and M. Petrolo, Beam Structures: Classical and Advanced Theories, John Wiley & Sons, NJ, USA, 2011.
  • E. Carrera, M. Cinefra, M. Petrolo, and, and E. Zappino, Finite Element Analysis of Structures through Unified Formulation, John Wiley & Sons, Chichester, West Sussex, 2014.
  • E. Carrera, M. Filippi, P. K. Mahato, and A. Pagani, Accurate static response of single-and multi-cell laminated box beams, Compos. Struct., vol. 136, pp. 372–383, 2016. DOI: 10.1016/j.compstruct.2015.10.020.
  • M. Filippi and E. Carrera, Capabilities of 1d cuf-based models to analyze metallic/composite rotors. In 8th Australasian Congress on Applied Mechanics: ACAM 8, Engineers Australia, Melbourne, Australia, pp. 315, 2014.
  • E. Carrera and A. Pagani, Free vibration analysis of civil engineering structures by component-wise models, J. Sound Vib., vol. 333, no. 19, pp. 4597–4620, 2014. DOI: 10.1016/j.jsv.2014.04.063.
  • E. Carrera, M. Petrolo, and A. Varello, Advanced beam formulations for free-vibration analysis of conventional and joined wings, J. Aerosp. Eng., vol. 25, no. 2, pp. 282–293, 2012. DOI: 10.1061/(ASCE)AS.1943-5525.0000130.
  • A. Pagani, M. Petrolo, G. Colonna, and E. Carrera, Dynamic response of aerospace structures by means of refined beam theories, Aerosp. Sci. Technol., vol. 46, pp. 360–373, 2015. DOI: 10.1016/j.ast.2015.08.005.
  • F. Miglioretti and E. Carrera, Application of a refined multi-field beam model for the analysis of complex configurations, Mech. Adv. Mater. Struct., vol. 22, no. 1-2, pp. 52–66, 2015. DOI: 10.1080/15376494.2014.912365.
  • A. Pagani and E. Carrera, Unified formulation of geometrically nonlinear refined beam theories, Mech. Adv. Mater. Struct., vol. 25, no. 1, pp. 15–31, 2016. DOI: 10.1080/15376494.2016.1232458.
  • A. Pagani and E. Carrera, Large-deflection and post-buckling analyses of laminated composite beams by Carrera unified formulation, Compos. Struct., vol. 170, pp. 40–52, 2017. DOI: 10.1016/j.compstruct.2017.03.008.
  • A. Pagani, R. Augello, and E. Carrera, Frequency and mode change in the large deflection and post-buckling of compact and thin-walled beams, J. Sound Vib., vol. 432, pp. 88–104, 2018. DOI: 10.1016/j.jsv.2018.06.024.
  • E. Carrera, A. Pagani, and R. Augello, Effect of large displacements on the vibration response of composite beams, Int. J. Non-Lin. Mech., vol. 120, pp. 103390, 2020. DOI: 10.1016/j.ijnonlinmec.2019.103390.
  • B. Wu, G. H. Li, A. Pagani, W. Q. Chen, and E. Carrera, Geometrically nonlinear refined shell theories by Carrera unified formulation, Mech. Adv. Mater. Struc., pp. 1–21, 2019. DOI: 10.1080/15376494.2019.1702237.
  • K. J. Bathe, Finite Element Procedure, Prentice Hall, Upper Saddle River, NJ, 1996.
  • T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Courier Corporation, MA, USA, 2012.
  • E. Carrera, and M. Petrolo, Refined beam elements with only displacement variables and plate/shell capabilities, Meccanica., vol. 47, no. 3, pp. 537–556, 2012. DOI: 10.1007/s11012-011-9466-5.
  • E. Carrera, A. Pagani, and R. Augello, Evaluation of geometrically nonlinear effects due to large cross-sectional deformations of compact and shell-like structures, Mech. Adv. Mater. Struc., 2018. DOI: 10.1080/15376494.2018.1507063.
  • E. Carrera, G. Giunta, and M. Petrolo, Beam Structures: classical and Advanced Theories, John Wiley & Sons, New York, 2011.
  • E. Carrera, A study on arc-length-type methods and their operation failures illustrated by a simple model, Comput. Struct., vol. 50, no. 2, pp. 217–229, 1994. DOI: 10.1016/0045-7949(94)90297-6.
  • M. A. Crisfield, A fast incremental/iterative solution procedure that handles “snap-through”. In Computational Methods in Nonlinear Structural and Solid Mechanics, Elsevier, Amsterdam, Netherlands, 1981.
  • M. A. Crisfield, An arc-length method including line searches and accelerations, Int. J. Numer. Meth. Eng., vol. 19, no. 9, pp. 1269–1289, 1983. DOI: 10.1002/nme.1620190902.
  • K. Y. Sze, X. H. Liu, and S. H. Lo, Popular benchmark problems for geometric nonlinear analysis of shells, Finite Elem. Anal. Des., vol. 40, no. 11, pp. 1551–1569, 2004. DOI: 10.1016/j.finel.2003.11.001.
  • W. Flügge, Stresses in Shells, Springer, Berlin, 2nd edition, 1960.
  • E. Carrera and E. Zappino, One-dimensional finite element formulation with node-dependent kinematics, Comput. Struct., vol. 192, pp. 114–125, 2017. DOI: 10.1016/j.compstruc.2017.07.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.