235
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Creep behavior of magnetorheological gels

, &
Pages 1031-1039 | Received 25 Dec 2019, Accepted 21 Feb 2020, Published online: 10 Mar 2020

References

  • H. Xia, Mo Song, Z. Zhang, and M. Richardson, Microphase separation, stress relaxation, and creep behavior of polyurethane nanocomposites, J. Appl. Polym. Sci., vol. 103, no. 5, pp. 2992–3002, 2007. DOI: 10.1002/app.25462.
  • H. J. Maria, N. Lyczko, A. Nzihou, K. Joseph, C. Mathew, and S. Thomas, Stress relaxation behavior of organically modified montmorillonite filled natural rubber/nitrile rubber nanocomposites, Appl. Clay Sci., vol. 87, pp. 120–128, 2014. DOI: 10.1016/j.clay.2013.10.019.
  • M. Iurzhenko, et al., Creep/stress relaxation of novel hybrid organic-inorganic polymer systems synthesized by joint polymerization of organic and inorganic oligomers. In: Macromolecular Symposia, vol. 341, Wiley Online Library, Weinheim, pp. 51–56, 2014. DOI: 10.1002/masy.201300163.
  • X. Yang, C. G. Shuai, L. G. Chen, and S. L. Yang, Study on creep property of polyurethane composites, Mater. Res. Innovations., vol. 19, no. sup5, pp. S5-199, 2015. DOI: 10.1179/1432891714Z.0000000001077.
  • M. R. Jolly, J. D. Carlson, and B. C. Munoz, A model of the behaviour of magnetorheological materials, Smart Mater. Struct., vol. 5, no. 5, pp. 607–614, 1996. DOI: 10.1088/0964-1726/5/5/009.
  • A. Fuchs, et al., Development and characterization of hydrocarbon polyol polyurethane and silicone magnetorheological polymeric gels, J. Appl. Polym. Sci., vol. 92, no. 2, pp. 1176–1182, 2004. DOI: 10.1002/app.13434.
  • J. M. Ginder, M. E. Nichols, L. D. Elie, and, S. M. Clark, Controllable-stiffness components based on magnetorheological elastomer. In: Smart Structures and Materials 2000: Smart Structures and Integrated Systems, vol. 3985, International Society for Optics and Photonics, Newport Beach, CA, pp. 418–426, 2000. DOI: 10.1117/12.388844.
  • H. X. Deng, and X. L. Gong, Application of magnetorheological elastomer to vibration absorber, Commun. Nonlinear Sci. Numer. Simul., vol. 13, no. 9, pp. 1938–1947, 2008. DOI: 10.1016/j.cnsns.2007.03.024.
  • S. H. Eem, H. Jung, and J. H. Koo, Seismic performance evaluation of an MR elastomer-based smart base isolation system using real-time hybrid simulation, Smart Mater. Struct., vol. 22, no. 5, pp. 55003, 2013. DOI: 10.1088/0964-1726/22/5/055003.
  • T. Hu, S. Xuan, L. Ding, and X. Gong, Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced magnetorheological elastomer, Mater. Des., vol. 156, pp. 528–537, 2018. DOI: 10.1016/j.matdes.2018.07.024.
  • A. Fuchs, Q. Zhang, J. Elkins, F. Gordaninejad, and C. Evrensel, Development and characterization of magnetorheological elastomers, J. Appl. Polym. Sci., vol. 105, no. 5, pp. 2497–2508, 2007. DOI: 10.1002/app.24348.
  • X. L. Gong, X. Z. Zhang, and P. Q. Zhang, Fabrication and characterization of isotropic magnetorheological elastomers, Polym. Test., vol. 24, no. 5, pp. 669–676, 2005. DOI: 10.1016/j.polymertesting.2005.03.015.
  • Y. Wang, Y. Hu, X. L. Gong, W. Jiang, P. Zhang, and Z. Chen, Preparation and properties of magnetorheological elastomers based on silicon rubber/polystyrene blend matrix, J. Appl. Polym. Sci., vol. 103, no. 5, pp. 3143–3149, 2007. DOI: 10.1002/app.24598.
  • Y. Hu, et al., New magnetorheological elastomers based on polyurethane/si-rubber hybrid, Polym. Test., vol. 24, no. 3, pp. 324–329, 2005. DOI: 10.1016/j.polymertesting.2004.11.003.
  • L. Chen, X. L. Gong, W. Q. Jiang, J. Yao, H. X. Deng, and W. H. Li, Investigation on magnetorheological elastomers based on natural rubber, J. Mater. Sci., vol. 42, no. 14, pp. 5483–5489, 2007. DOI: 10.1007/s10853-006-0975-x.
  • T. V. Pearce, Jelly blocks and jelly letters, September 5 2006. US Patent 7,101,247.
  • T. Tian, and M. Nakano, Fabrication and characterisation of anisotropic magnetorheological elastomer with 45 iron particle alignment at various silicone oil concentrations, J. Intell. Mater. Syst. Struct., vol. 29, no. 2, pp. 151–159, 2018. DOI: 10.1177/1045389X17704071.
  • W. H. Li, H. Du, G. Chen, and S. H. Yeo, Experimental investigation of creep and recovery behaviors of magnetorheological fluids, Mater. Sci. Eng. A., vol. 333, no. 1–2, pp. 368–376, 2002. DOI: 10.1016/S0921-5093(01)01865-2.
  • H. See, R. Chen, and M. Keentok, The creep behaviour of a field-responsive fluid, Colloid Polym. Sci., vol. 282, no. 5, pp. 423–428, 2004. DOI: 10.1007/s00396-003-0962-6.
  • W. Li, Y. Zhou, T. Tian, and G. Alici, Creep and recovery behaviors of magnetorheological elastomers, Front. Mech. Eng. China., vol. 5, no. 3, pp. 341–346, 2010. DOI: 10.1007/s11465-010-0096-8.
  • S. S. Deshmukh, and G. H. McKinley, Rheological behavior of magnetorheological suspensions under shear, creep and large amplitude oscillatory shear (laos) flow, Proceedings of the XIVth International Congress on Rheology, Seoul, Korea, 2004.
  • Y. Xu, X. Gong, S. Xuan, X. Li, L. Qin, and W. Jiang, Creep and recovery behaviors of magnetorheological plastomer and its magnetic-dependent properties, Soft Matter., vol. 8, no. 32, pp. 8483–8492, 2012. DOI: 10.1039/c2sm25998b.
  • I. Bica, Y. D. Liu, and H. J. Choi, Magnetic field intensity effect on plane electric capacitor characteristics and viscoelasticity of magnetorheological elastomer, Colloid Polym. Sci., vol. 290, no. 12, pp. 1115–1122, 2012. DOI: 10.1007/s00396-012-2627-9.
  • W. X. Yu, S. L. Yang, and X. Yang, Creep property of magnetorheological elastomers of seism isolator for building. In: Applied Mechanics and Materials, vol. 357, Trans Tech Publications, Switzerland, pp. 1291–1294, 2013. DOI: 10.4028/www.scientific.net/AMM.357-360.1291.
  • Z. Wang, K. Shahrivar, and J. de Vicente, Creep and recovery of magnetorheological fluids: Experiments and simulations, J. Rheol., vol. 58, no. 6, pp. 1725–1750, 2014. DOI: 10.1122/1.4891247.
  • S. Qi, M. Yu, J. Fu, P. D. Li, and M. Zhu, Creep and recovery behaviors of magnetorheological elastomer based on polyurethane/epoxy resin IPNS matrix, Smart Mater. Struct., vol. 25, no. 1, pp. 15020, 2016. DOI: 10.1088/0964-1726/25/1/015020.
  • Z. Li, D. Li, D. Hao, and Y. Cheng, Study on the creep and recovery behaviors of ferrofluids, Smart Mater. Struct., vol. 26, no. 10, pp. 105022, 2017. DOI: 10.1088/1361-665X/aa8835.
  • N. Ghafoorianfa, Creep behavior of magnetorheological elastomers under combined magnetic and mechanical loads. In: Behavior and Mechanics of Multifunctional Materials and Composites 2016, vol. 9800, International Society for Optics and Photonics, Las Vegas, Nevada, pp. 980006, 2016. DOI: 10.1117/12.2218927.
  • H. Meharthaj, S. M. Sivakumar, and A. Arockiarajan, Significance of particle size on the improved performance of magnetorheological gels, J. Magn. Magn. Mater., vol. 490, pp. 165483, 2019. DOI: 10.1016/j.jmmm.2019.165483.
  • P. V. Rao, S. Maniprakash, S. M. Srinivasan, and A. R. Srinivasa, Functional behavior of isotropic magnetorheological gels, Smart Mater. Struct., vol. 19, no. 8, pp. 85019, 2010. DOI: 10.1088/0964-1726/19/8/085019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.