1,019
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of additively manufactured triply periodic minimal surface structures under compressive loading

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1841-1855 | Received 19 Jun 2020, Accepted 23 Oct 2020, Published online: 05 Nov 2020

References

  • S. Doroudiani, and M.T. Kortschot, Polystyrene foams. III. Structure–tensile properties relationships, J. Appl. Polymer., vol. 90, pp. 1427–1434, 2003. DOI: 10.1002/app.12806.
  • W. Chen, H. Hao, D. Hughes, et al., Static and dynamic mechanical properties of expanded polystyrene, Mater. Des., vol. 69, pp. 170–180, 2015. DOI: 10.1016/j.matdes.2014.12.024.
  • L.J. Gibson, and M.F. Ashby, Cellular Solids: Structures and Properties, 2nd ed. Cambridge UK: Cambridge University Press, 1997. DOI: 10.1017/CBO9781139878326.
  • E. Linul, M. Marsavina, T.,T. Voiconi, and T. Sadowski, Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression, J. Phys.: Conf. Ser., vol. 451, pp. 012002, 2013. DOI: 10.1088/1742-6596/451/1/012002.
  • E. Linul, D.A. Şerban, L. Marsavina, and T. Sadowski, Assessment of collapse diagrams of rigid polyurethane foams under dynamic loading conditions, Arch. Civ. Mech. Eng., vol. 17, no. 3, pp. 1–6, 2017. DOI: 10.1016/j.acme.2016.12.009.
  • L. Marsavina, E. Linul, T. Voiconi, and T. Sadowski, A comparison between dynamic and static fracture toughness of polyurethane foams, Polym. Test., vol. 32, no. 4, pp. 673–680, 2013. DOI: 10.1016/j.polymertesting.2013.03.013.
  • M.R.M. Aliha, E. Linul, A. Bahmani, and L. Marsavina, Experimental and theoretical fracture toughness investigation of PUR foams under mixed mode I + III loading, Polym. Test., vol. 67, pp. 75–83, 2018. DOI: 10.1016/j.polymertesting.2018.02.015.
  • L. Marsavina, D.M. Constantinescu, E. Linul, et al., Evaluation of mixed mode fracture for PUR foams, Proc. Mater. Sci., vol. 3, pp. 1342–1352, 2014. DOI: 10.1016/j.mspro.2014.06.217.
  • I.N. Orbulov, and K. Majlinger, Description of the compressive response of metal matrix syntactic foams, Mater. Des., vol. 49, pp. 1–9, 2013. DOI: 10.1016/j.matdes.2013.02.007.
  • M. Javad-Nayyeri, S.M.H. Mirbagheri, and S. Amirkhanlou, High strength tailor-made metallic foams (TMFs): Development and characterization, Mater. Lett., vol. 154, pp. 152–155, 2015. DOI: 10.1016/j.matlet.2015.04.079.
  • N. Movahedi, S. Conway, I. Belova, et al., Influence of particle arrangement on the compression of functionally graded metal syntactic foams, Mater. Sci. Eng. A, vol. 764, pp. 138242, 2019. DOI: 10.1016/j.msea.2019.138242.
  • N. Movahedi, G.E. Murch, I.V. Belova, et al., Functionally graded metal syntactic foam: Fabrication and mechanical properties, Mater. Des., vol. 168, pp. 107652, 2019. DOI: 10.1016/j.matdes.2019.107652.
  • I.M. Orbulov, Compressive properties of aluminium matrix syntactic foams, Mater. Sci. Eng. A, vol. 555, 2012. DOI: 10.1016/j.msea.2012.06.032.
  • E. Linul, D. Lell, N. Movahedi, et al., Compressive properties of zinc syntactic foams at elevated temperatures, Compos. Part B: Eng., vol. 167, pp. 122–134, 2019. DOI: 10.1016/j.compositesb.2018.12.019.
  • J.M. Clark, A. Post, T.B. Hoshizaki, et al., Distribution of brain strain in the cerebrum for laboratory impacts to ice hockey goaltender masks, J. Biomech. Eng. –Trans. ASME., vol. 140, no. 12, 2018. DOI: 10.1115/1.4040605.
  • T.A. Connor, J.M. Clark, J. Jayamohan, e t al., Do equestrian helmets prevent concussion? A retrospective analysis of head injuries and helmet damage from real-world equestrian accidents, Sports Medicine-Open., vol. 5, 2019. DOI: 10.1186/s40798-019-0193-0.
  • T.Y. Pang, K.T. Thai, A.S. McIntosh, et al., Head and neck responses in oblique motorcycle helmet impacts: a novel laboratory test method, Int. J. Crashworthiness, vol. 16, no. 3, pp. 297–307, 2011. DOI: 10.1080/13588265.2011.559799.
  • H. Mustafa, T.Y. Pang, T. Ellena, et al., Impact attenuation of user-centred bicycle helmet design with different foam densities, J. Phys. Conf. Ser., vol. 1150, 2019. DOI: 10.1088/1742-6596/1150/1/01204.
  • J. Wilhelm, M. Ptak, and E. Rusiński, Simulated depiction of head and brain injuries in the context of cellularbased materials in passive safety devices, Sci. J. Mar. Univ. Szczecin., vol. 50, no. 122, pp. 98–104, 2017. DOI: 10.17402/222.
  • F.A.O. Fernandes, R.J. Alves de Sousa, M. Ptak, et al., Helmet design based on the optimization of biocomposite energy-absorbing liners under multi-impact loading, Appl. Sci. -Basel., vol. 9, no. 4, pp. 735, 2019. DOI: 10.3390/app9040735.
  • R.M. Coelho, R.J. Alves de Sousa, F.A.O. Fernandes, and F. Teixeira-Dias, New composite liners for energy absorption purposes, Mater. Des., vol. 43, pp. 384–392, 2012. DOI: 10.1016/j.matdes.2012.07.020.
  • S.F. Khosroshahi, H. Duckworth, U. Galvanetto, et al., The effects of topology and relative density of lattice liners on traumatic brain injury mitigation, J. Biomech., vol. 97, pp. 109376, 2019. DOI: 10.1007/BF02412150.
  • S.F. Khosroshahi, S.A. Tsampas, and U. Galvanetto, Feasibility study on the use of a hierarchical lattice architecture for helmet liners, Mater. Today Commun., vol. 14, pp. 312–323, 2018. DOI: 10.1016/j.mtcomm.2018.02.002.
  • J.C. Najmon, D.J. Jacob, Z.M. Wood, et al., Cellular Helmet Liner Design through Bio-inspired Structures and Topology Optimization of Compliant Mechanism Lattices, SAE Int. J. Trans. Saf., vol. 6, no. 3, pp. 217–235, 2018. DOI: 10.4271/2018-01-1057.
  • T. Shepherd, K. Winwood, P. Venkatraman, et al., Validation of a finite element modeling process for auxetic structures under impact, Phys. Status Solidi B, vol. 257, no. 10, pp. 1900197, 2020. DOI: 10.1002/pssb.201900197.
  • A. Du Plessis, C. Broeckhoven, I. Yadroitsava, et al., Beautiful and functional: a review of biomimetic design in additive manufacturing, Addit. Manuf., vol. 27, pp. 408–427, 2019. DOI: 10.1016/j.addma.2019.03.033.
  • L. Zhang, S. Feih, S. Daynes, et al., Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading, Addit. Manuf., vol. 23, pp. 505–515, 2018. DOI: 10.1016/j.addma.2018.08.007.
  • S. Bhandari, and R. Lopez-Anido, Finite element analysis of thermoplastic polymer extrusion 3D printed material for mechanical property prediction, Addit. Manuf., vol. 22, pp. 187–196, 2018. DOI: 10.1016/j.addma.2018.05.009.
  • S.Y. Choy, C.N. Sun, K.F. Leong, and J. Wei, Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: design, orientation and density, Addit. Manuf., vol. 16, pp. 213–224, 2017. DOI: 10.1016/j.addma.2017.06.012.
  • F.F. Abayazid, and M. Ghajari, Material characterisation of additively manufactured elastomers at different strain rates and build orientations, Addit. Manuf., vol. 33, pp. 101160, 2020. DOI: 10.1016/j.addma.2020.101160.
  • I. Maskery, L. Sturmb, A.O. Aremu, et al., Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing, Polymer, vol. 152, pp. 62–71, 2018. DOI: 10.1016/j.polymer.2017.11.049.
  • C. Neff, N. Hopkinson, and N.B. Crane, Experimental and analytical investigation of mechanical behavior of laser-sintered diamond-lattice structures, Addit. Manuf., vol. 22, pp. 807–816, 2018. DOI: 10.1016/j.addma.2018.07.005.
  • A. Panesar, M. Abdi, D. Hickman, et al., Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing, Addit. Manuf., vol. 19, pp. 81–94, 2018. DOI: 10.1016/j.addma.2017.11.008.
  • J. Podrouzek, M. Marcon, K. Ninčević, et al., Bio-inspired 3D infill patterns for additive manufacturing and structural applications, Materials (Basesl)., vol. 12, no. 3, pp. 499, 2019. DOI: 10.3390/ma12030499.
  • S. Yu, J. Sun, and J. Bai, Investigation of functionally graded TPMS structures fabricated by additive manufacturing, Mater. Des., vol. 182, pp. 108021, 2019. DOI: 10.1016/j.matdes.2019.108021.
  • O. Al-Ketan, and R.K.A. Al-Rub, Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices, Adv. Eng. Mater., vol. 21, no. 10, pp. 1900524, 2019. DOI: 10.1002/adem.201900524.
  • D.W. Abueidda, M. Elhebeary, C.S. Shiang, et al., Mechanical properties of 3D printed polymeric gyroid cellular structures: experimental and finite element study, Mater. Des., vol. 165, pp. 107597, 2019. DOI: 10.1016/j.matdes.2019.107597.
  • M. Avalle, G. Belingardi, and R. Montanini, Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram, Int. J. Impact Eng., vol. 25, no. 5, pp. 455–472, 2001. DOI: 10.1016/S0734-743X.
  • J. Miltz, and O. Ramon, Energy absorption characteristics of polymeric foams used as cushioning materials, Polym. Eng. Sci., vol. 30, pp. 129–133, 1990. DOI: 10.1002/pen.760300210.
  • A.G. Hanssen, M. Langseth, and O.S. Hopperstad, Static and dynamic crushing of square aluminium extrusions with aluminium foam, Int. J. Impact Eng., vol. 24, no. 4, pp. 347–383, 2000. DOI: 10.1016/S0734-743X.
  • A.G. Hanssen, M. Langseth, and O.S. Hopperstad, Static crushing of square aluminium extrusions with aluminium foam, Int. J. Mech. Sci., vol. 41, pp. 967–993, 1999. DOI: 10.1016/S0020-7403(98)00064-2.
  • I. Maskery, N.T. Aboulkhair, A.O. Aremu, et al., Compressive failure modes and energy absorption in additivelymanufactured double gyroid lattices, Addit. Manuf., vol. 16, pp. 24–29, 2017. DOI: 10.1016/j.addma.2017.04.003.
  • K.C. Rush, Load compression behavior of flexible foams, J. Appl. Polym. Sci., vol. 13, 1969.
  • K.C. Rush, Energy-absorbing characteristics of foamed polymers, J. Appl. Polym. Sci., vol. 14, 1970.
  • K.C. Rush, Load compression behavior of brittle foams, J. Appl. Polym. Sci., vol. 14, 1970.
  • D.W. Abueidda, M. Elhebeary, C.S. Shianga, el. Al., Compression and buckling of microarchitectured Neovius-lattice, Extreme Mech. Lett., vol. 37, pp. 100688, 2020. DOI: 10.1016/j.eml.2020.100688.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.