67
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

High-precision stress calculations for composite cylindrical shells with general boundary conditions using strong SaS formulation and extended DQ method

&
Pages 3359-3371 | Received 03 Feb 2021, Accepted 23 Feb 2021, Published online: 15 Mar 2021

References

  • P. Cicala, Analytic solutions of axisymmetric problems in elastic cylinders, Meccanica, vol. 20, no. 1, pp. 43–48, 1985. DOI: 10.1007/BF02337061.
  • C. P. Wu, K. H. Chiu, and Y. M. Wang, A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells, Comput. Mater. Continua., vol. 8, pp. 93–132, 2008.
  • C. P. Wu and Y. C. Liu, A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells, Compos. Struct., vol. 147, pp. 1–15, 2016. DOI: 10.1016/j.compstruct.2016.03.031.
  • J. Q. Tarn, H. H. Chang, and W. D. Tseng, Axisymmetric deformation of a transversely isotropic cylindrical body: a Hamiltonian state-space approach, J. Elast., vol. 97, no. 2, pp. 131–154, 2009. DOI: 10.1007/s10659-009-9213-5.
  • G. Frobenius, Ueber die Integration der linearen Differentialgleichungen durch Reihen, J. Reine Angew. Math., vol. 76, pp. 214–235, 1873.
  • A. N. Gol’denveizer, Theory of Thin Elastic Shells, Pergamon Press, New York, 1961.
  • G. M. Kulikov and S. V. Plotnikova, Advanced formulation for laminated composite shells: 3D stress analysis and rigid-body motions, Compos. Struct., vol. 95, pp. 236–246, 2013. DOI: 10.1016/j.compstruct.2012.07.020.
  • S. Srinivas, Analysis of Laminated, Composite, Circular Cylindrical Shells with General Boundary Conditions, NASA TR R-412, NASA, Washington, DC, 1974.
  • J. G. Ren, Analysis of simply-supported laminated circular cylindrical shell roofs, Compos. Struct., vol. 11, no. 4, pp. 277–292, 1989. DOI: 10.1016/0263-8223(89)90092-5.
  • T. K. Varadan and K. Bhaskar, Bending of laminated orthotropic cylindrical shells – an elasticity approach, Compos. Struct., vol. 17, no. 2, pp. 141–156, 1991. DOI: 10.1016/0263-8223(91)90067-9.
  • N. N. Huang and T. R. Tauchert, Thermoelastic solution for cross-ply cylindrical panels, J. Therm. Stresses., vol. 14, no. 2, pp. 227–237, 1991. DOI: 10.1080/01495739108927064.
  • C. Q. Chen and Y. P. Shen, Piezothermoelasticity analysis for a circular cylindrical shell under the state of axisymmetric deformation, Int. J. Eng. Sci., vol. 34, no. 14, pp. 1585–1600, 1996. DOI: 10.1016/S0020-7225(96)00053-5.
  • P. Heyliger, A note on the static behavior of simply-supported laminated piezoelectric cylinders, Int. J. Solids Struct., vol. 34, pp. 3781–3794, 1997.
  • S. S. Vel, Exact thermoelastic analysis of functionally graded anisotropic hollow cylinders with arbitrary material gradation, Mech. Adv. Mater. Struct., vol. 18, no. 1, pp. 14–31, 2011. DOI: 10.1080/15376494.2010.519218.
  • W. S. Burton and A. K. Noor, Three-dimensional solutions for thermomechanical stresses in sandwich panels and shells, J. Eng. Mech., vol. 120, no. 10, pp. 2044–2071, 1994. DOI: 10.1061/(ASCE)0733-9399(1994)120:10(2044).
  • K. Xu and A. K. Noor, Three-dimensional analytical solutions for coupled thermo-electroelastic response of multilayered cylindrical shells, AIAA J., vol. 34, no. 4, pp. 802–810, 1996. DOI: 10.2514/3.13143.
  • S. Kapuria, P. C. Dumir, and S. Sengupta, Nonaxisymmetric exact piezothermoelastic solution for laminated cylindrical shell, AIAA J., vol. 35, no. 11, pp. 1792–1795, 1997. DOI: 10.2514/3.13751.
  • S. Kapuria, S. Sengupta, and P. C. Dumir, Three-dimensional solution for simply-supported piezoelectric cylindrical shell for axisymmetric load, Comput. Methods Appl. Mech. Eng., vol. 140, no. 1-2, pp. 139–155, 1997. DOI: 10.1016/S0045-7825(96)01075-4.
  • S. Kapuria, S. Sengupta, and P. C. Dumir, Three-dimensional solution for a hybrid cylindrical shell under axisymmetric thermoelectric load, Arch. Appl. Mech., vol. 67, no. 5, pp. 320–330, 1997. DOI: 10.1007/s004190050120.
  • J. Q. Tarn, An asymptotic theory for dynamic response of anisotropic inhomogeneous and laminated cylindrical shells, J. Mech. Phys. Solids., vol. 42, no. 10, pp. 1633–1650, 1994. DOI: 10.1016/0022-5096(94)90090-6.
  • J. Q. Tarn and C. B. Yen, A three-dimensional asymptotic analysis of anisotropic inhomogeneous and laminated cylindrical shells, Acta Mech., vol. 113, no. 1-4, pp. 137–153, 1995. DOI: 10.1007/BF01212639.
  • Z. Q. Cheng and J. N. Reddy, Asymptotic theory for laminated piezoelectric circular cylindrical shells, AIAA J., vol. 40, no. 3, pp. 553–558, 2002. DOI: 10.2514/3.15096.
  • C. P. Wu, J. Y. Lo, and J. K. Chao, A three-dimensional asymptotic theory of laminated piezoelectric shells, Comput. Mater. Continua., vol. 2, pp. 119–137, 2005.
  • C. P. Wu, Y. S. Syu, and J. Y. Lo, Three-dimensional solutions for multilayered piezoelectric hollow cylinders by an asymptotic approach, Int. J. Mech. Sci., vol. 49, no. 6, pp. 669–689, 2007. DOI: 10.1016/j.ijmecsci.2006.11.002.
  • G. M. Kulikov, Refined global approximation theory of multilayered plates and shells, J. Eng. Mech., vol. 127, no. 2, pp. 119–125, 2001. DOI: 10.1061/(ASCE)0733-9399(2001)127:2(119).
  • G. M. Kulikov and S. V. Plotnikova, On the use of a new concept of sampling surfaces in a shell theory, Adv. Struct. Mater., vol. 15, pp. 715–726, 2011.
  • G. M. Kulikov and S. V. Plotnikova, A sampling surfaces method and its application to three-dimensional exact solutions for piezoelectric laminated shells, Int. J. Solids Struct., vol. 50, no. 11-12, pp. 1930–1943, 2013. DOI: 10.1016/j.ijsolstr.2013.02.010.
  • G. M. Kulikov, A. A. Mamontov, and S. V. Plotnikova, Coupled thermoelectroelastic stress analysis of piezoelectric shells, Compos. Struct., vol. 124, pp. 65–76, 2015. DOI: 10.1016/j.compstruct.2014.12.045.
  • G. M. Kulikov, S. V. Plotnikova, M. G. Kulikov, and P. V. Monastyrev, Three-dimensional vibration analysis of layered and functionally graded plates through sampling surfaces formulation, Compos. Struct., vol. 152, pp. 349–361, 2016. DOI: 10.1016/j.compstruct.2016.05.043.
  • G. M. Kulikov, S. V. Plotnikova, and E. Carrera, A robust, four-node, quadrilateral element for stress analysis of functionally graded plates through higher-order theories, Mech. Adv. Mater. Struct., vol. 25, no. 15-16, pp. 1383–1402, 2018. DOI: 10.1080/15376494.2017.1288994.
  • G. M. Kulikov and S. V. Plotnikova, Exact geometry four-node solid-shell element for stress analysis of functionally graded shell structures via advanced SaS formulation, Mech. Adv. Mater. Struct., vol. 27, no. 12, pp. 948–964, 2020. DOI: 10.1080/15376494.2018.1502380.
  • G. M. Kulikov, S. V. Plotnikova, and A. O. Glebov, Assessment of nonlinear exact geometry sampling surfaces solid-shell elements and ANSYS solid elements for 3D stress analysis of piezoelectric shell structures, Int. J. Numer. Methods Eng., vol. 121, no. 17, pp. 3795–3823, 2020. DOI: 10.1002/nme.6382.
  • T. Ye, G. Jin, and Z. Su, Three-dimensional vibration analysis of sandwich and multilayered plates with general ply stacking sequences by a spectral-sampling surface method, Compos. Struct., vol. 176, pp. 1124–1142, 2017. DOI: 10.1016/j.compstruct.2017.06.008.
  • T. Ye, G. Jin, and S. Gao, Three-dimensional hygrothermal vibration of multilayered cylindrical shells, Compos. Struct., vol. 201, pp. 867–881, 2018. DOI: 10.1016/j.compstruct.2018.06.055.
  • G. M. Kulikov and S. V. Plotnikova, Solution of three-dimensional problems for thick elastic shells by the method of reference surfaces, Mech. Solids., vol. 49, no. 4, pp. 403–412, 2014. DOI: 10.3103/S0025654414040050.
  • G. M. Kulikov and S. V. Plotnikova, Strong sampling surfaces formulation for layered shells, Int. J. Solids Struct., vol. 121, pp. 75–85, 2017. DOI: 10.1016/j.ijsolstr.2017.05.017.
  • G. M. Kulikov, S. V. Plotnikova, and M. G. Kulikov, Three-dimensional vibration analysis of simply supported laminated cylindrical shells and panels by a strong SaS formulation, ZAMM., vol. 99, pp. 201800100, 2019.
  • R. Bellman and J. Casti, Differential quadrature and long-term integration, J. Math. Anal. Appl., vol. 34, no. 2, pp. 235–238, 1971. DOI: 10.1016/0022-247X(71)90110-7.
  • R. Bellman, B. G. Kashef, and J. Casti, Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, J. Comput. Phys., vol. 10, no. 1, pp. 40–52, 1972. DOI: 10.1016/0021-9991(72)90089-7.
  • C. W. Bert, S. K. Jang, and A. G. Striz, Two new approximate methods for analyzing free vibration of structural components, AIAA J., vol. 26, no. 5, pp. 612–618, 1988. DOI: 10.2514/3.9941.
  • C. W. Bert, X. Wang, and A. G. Striz, Differential quadrature for static and free vibration analyses of anisotropic plates, Int. J. Solids Struct., vol. 30, no. 13, pp. 1737–1744, 1993. DOI: 10.1016/0020-7683(93)90230-5.
  • J. R. Quan and C. T. Chang, New insights in solving distributed system equations by the quadrature method – I. Analysis, Comput. Chem. Eng., vol. 13, no. 7, pp. 779–788, 1989. DOI: 10.1016/0098-1354(89)85051-3.
  • J. R. Quan and C. T. Chang, New insights in solving distributed system equations by the quadrature method – II. Numerical experiments, Comput. Chem. Eng., vol. 13, no. 9, pp. 1017–1024, 1989. DOI: 10.1016/0098-1354(89)87043-7.
  • C. Shu and B. E. Richards, Application of generalized differential quadrature to solve two-dimensional incompressible Navier–Stokes equations, Int. J. Numer. Meth. Fluids., vol. 15, no. 7, pp. 791–798, 1992. DOI: 10.1002/fld.1650150704.
  • C. Shu, Differential Quadrature and its Application in Engineering, Springer, Berlin, 2000.
  • K. M. Liew and T. M. Teo, Modeling via differential quadrature method: three-dimensional solutions for rectangular plates, Comput. Methods Appl. Mech. Eng., vol. 159, no. 3-4, pp. 369–381, 1998. DOI: 10.1016/S0045-7825(97)00279-X.
  • T. M. Teo and K. M. Liew, A differential quadrature procedure for three-dimensional buckling analysis of rectangular plates, Int. J. Solids Struct., vol. 36, no. 8, pp. 1149–1168, 1999. DOI: 10.1016/S0020-7683(97)00344-2.
  • T. M. Teo and K. M. Liew, Three-dimensional elasticity solutions to some orthotropic plate problems, Int. J. Solids Struct., vol. 36, no. 34, pp. 5301–5326, 1999. DOI: 10.1016/S0020-7683(98)00240-6.
  • C. W. Bert and M. Malik, Differential quadrature method in computational mechanics, Appl. Mech. Rev., vol. 49, no. 1, pp. 1–28, 1996. DOI: 10.1115/1.3101882.
  • F. Tornabene, N. Fantuzzi, F. Ubertini, and E. Viola, Strong formulation finite element method based on differential quadrature: a survey, Appl. Mech. Rev., vol. 67, pp. 020801, 2015.
  • G. M. Kulikov, Application of strong SaS formulation and enhanced DQ method to 3D stress analysis of rectangular plates, Eur. J. Mech. A Solids., vol. 79, pp. 103861, 2020. DOI: 10.1016/j.euromechsol.2019.103861.
  • T. A. Davis, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw., vol. 30, no. 2, pp. 165–195, 2004. DOI: 10.1145/992200.992205.
  • T. A. Davis, Algorithm 832: UMFPACK V4.3 – an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw., vol. 30, no. 2, pp. 196–199, 2004. DOI: 10.1145/992200.992206.
  • T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal method for sparse LU factorization, SIAM J. Matrix Anal. Appl., vol. 18, no. 1, pp. 140–158, 1997. DOI: 10.1137/S0895479894246905.
  • ANSYS 2019 R2 Release, ANSYS Inc, Canonsburg, PA, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.