222
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Effect of stress on the thermal hysteresis of martensitic transformations - A continuum based particle dynamics model

Pages 3794-3803 | Received 25 Feb 2021, Accepted 24 Mar 2021, Published online: 06 Apr 2021

References

  • K. Bhattacharya, Microstructure of Martensite: why It Forms and How It Gives Rise to the Shape-Memory Effect, Oxford University Press, New York, 2003.
  • N. Choudhary, and D. Kaur, Shape memory alloy thin films and heterostructures for MEMS applications: A review, Sens. Actuators A. , vol. 242, pp. 162–181, 2016. DOI: 10.1016/j.sna.2016.02.026.
  • Y. Fu, H. Du, W. Huang, S. Zhang, and M. Hu, TiNibased thin films in MEMS applications: a review, Journal of Sensors and Actuators A., vol. 112, no. 2-3, pp. 395–408, 2004. DOI: 10.1016/j.sna.2004.02.019.
  • J. M. Jani, M. Leary, and A. Subic, Shape Memory Alloys in Automotive Applications, Trans Tech Publications Ltd (Applied Mechanics and Materials), Bäch, SCHWYZ, Switzerland, 2014. DOI: 10.4028/www.scientific.net/AMM.663.248.
  • L. Yanju, D. Haiyang, L. Liwu, and L. Jinsong, Shape memory polymers and their composites in aerospace applications: a review, Smart Mater. Struct., vol. 23, no. 2, pp. 023001, 2014.
  • KathrynJ. De Laurentis, and Constantinos Mavroidis, Mechanical design of a shape memory alloy actuated prosthetic hand, Technol. Health Care., vol. 10, no. 2, pp. 91–106, 2002. DOI: 10.3233/THC-2002-10202.
  • G. Dumont, and C. Kuehl, A dynamical training and design simulator for active catheters, Int. J. Adv. Rob. Syst., vol. 1, no. 4, pp. 28–250, 2004. DOI: 10.5772/5815.
  • V. K. Varadan, and V. V. Varadan, Microsensors, microelectromechanical systems (MEMS), and electronics for smart structures and systems, Smart Mater. Struct., vol. 9, no. 6, pp. 953–972, 2000. DOI: 10.1088/0964-1726/9/6/327.
  • W. U. Jianxin, J. Bohong, and T. Hsu, Influence of grain size and ordering degree of the parent phase on Ms in a CuZnAl alloy containing boron, Acta Metall., vol. 36, no. 6, pp. 1521–1526, 1988. DOI: 10.1016/0001-6160(88)90219-2.
  • J. V. Humbeeck, Damping capacity of thermoelastic martensite in shape memory alloys, J. Alloys Compd., vol. 355, no. 1-2, pp. 58–64, 2003.
  • J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, A review of shape memory alloy research, applications and opportunities, Mater. Des., vol. 56, pp. 1078–1113, 2014. DOI: 10.1016/j.matdes.2013.11.084.
  • A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, and S. Viscuso, The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators, Sens. Actuators., vol. 158, no. 1, pp. 149–160, 2010. DOI: 10.1016/j.sna.2009.12.020.
  • A. Evirgen, I. Karaman, R. Santamarta, J. Pons, C. Hayrettin, and R. Noebe, Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys, Acta Mater., vol. 121, pp. 374–383, 2016. DOI: 10.1016/j.actamat.2016.08.065.
  • R. F. Hamilton, H. Sehitoglu, Y. Chumlyakov, and H. J. Maier, Stress dependence of the hysteresis in single crystal NiTi alloys, Acta Mater., vol. 52, no. 11, pp. 3383–3402, 2004. DOI: 10.1016/j.actamat.2004.03.038.
  • H. Sehitoglu, C. Efstathiou, H. J. Maier, and Y. Chumlyakov, Hysteresis and deformation mechanisms of transforming FeNiCoTi, Mech. Mater., vol. 38, no. 5-6, pp. 538–550, 2006. DOI: 10.1016/j.mechmat.2005.05.024.
  • R. Abeyaratne, and S. Vedantam, A lattice-based model of the kinetics of twin boundary motion, J. Mech. Phys. Solids., vol. 51, no. 9, pp. 1675–1700, 2003. DOI: 10.1016/S0022-5096(03)00069-3.
  • F. Hildebrand, and R. Abeyaratne, An atomistic investigation of the kinetics of detwinning, J. Mech. Phys. Solids., vol. 56, no. 4, pp. 1296–1319, 2008. DOI: 10.1016/j.jmps.2007.09.006.
  • Z. Zhang, et al., Nonhysteretic superelasticity of shape memory alloys at the nanoscale, Phys. Rev. Lett., vol. 111, no. 14, pp. 145701 2013., DOI: 10.1103/PhysRevLett.111.145701.
  • R. Abeyaratne, and J. K. Knowles, A continuum model of a thermoelastic solid capable of undergoing phase transitions, J. Mech. Phys. Solids., vol. 41, no. 3, pp. 541–571, 1993. DOI: 10.1016/0022-5096(93)90048-K.
  • L. C. Brinson, One-dimensional constitutive behavior of shapememory alloys: thermomechanical derivationwith non-constant material functions and redefined martensite internal variable, J. Intell. Mater. Syst. Struct., vol. 4, no. 2, pp. 229–242, 1993. DOI: 10.1177/1045389X9300400213.
  • P. Thamburaja, Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys, J. Mech. Phys. Solids., vol. 53, no. 4, pp. 825–856, 2005. DOI: 10.1016/j.jmps.2004.11.004.
  • J. G. Boyd, and D. C. Lagoudas, D. C. Lagoudas A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy, Int. J. Plast., vol. 12, no. 6, pp. 805–842, 1996. DOI: 10.1016/S0749-6419(96)00030-7.
  • R. Abeyaratne, C. Chu, and R. D. James, Kinetics of materials with wiggly energies: Theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy, Phil. Mag. A., vol. 73, no. 2, pp. 457–497, 1996. DOI: 10.1080/01418619608244394.
  • R. Abeyaratne, and J. K. Knowles, On the kinetics of an austenite → martensite phase transformation induced by impact in a Cu-Al-Ni shape-memory alloy, Acta Mater., vol. 45, no. 4, pp. 1671–1683, 1997. DOI: 10.1016/S1359-6454(96)00276-5.
  • S. Vedantam, Constitutive equations for rate-dependent pseudoelastic behaviour of shape memory alloys, Smart Mater. Struct., vol. 15, no. 5, pp. 1172–1178, 2006. DOI: 10.1088/0964-1726/15/5/003.
  • Y. Zhong, and T. Zhu, Phase-field modeling of martensitic microstructure in NiTi shape memory alloys, Acta Mater., vol. 75, pp. 337–347, 2014. DOI: 10.1016/j.actamat.2014.04.013.
  • A. E. Jacobs, Landau theory of a constrained ferroelastic in two dimensions, Phys. Rev. B Condens. Matter., vol. 52, no. 9, pp. 6327–6331, 1995. DOI: 10.1103/physrevb.52.6327.
  • R. Ahluwalia, S. S. Quek, and D. T. Wu, Simulation of grain size effects in nanocrystalline shape memory alloys, J. Appl. Phys., vol. 117, no. 24, pp. 244305, 2015. DOI: 10.1063/1.4923044.
  • Y. He, and Q. Sun, Effects of structural and material length scales on stress-induced martensite macro-domain patterns in tube configurations, Int. J. Solids Struct., vol. 46, no. 16, pp. 3045–3060, 2009. DOI: 10.1016/j.ijsolstr.2009.04.005.
  • A. Askar, Lattice Dynamical Foundations of Continuum Theories: Elasticity, Piezo-Electricity, Viscoelasticity, Plasticity, Series in Theoretical and Applied Mechanics. World Scientific Publishing Company, Singapore, 1986.
  • P. A. Cundall, and O. D. L. Strack, A discrete numerical model for granular assemblies, Geotechnique, vol. 29, no. 1, pp. 47–65, 1979. DOI: 10.1680/geot.1979.29.1.47.
  • B. Zhou, R. Huang, H. Wang, and J. Wang, DEM investigation of particle anti-rotation effects on the micromechanical response of granular materials, Granul. Matter, vol. 15, no. 3, pp. 315–326, 2013. DOI: 10.1007/s10035-013-0409-9.
  • D. Vijay Anand, B. S. Patnaik, and S. Vedantam, A dissipative particle dynamics study of a flexible filament in confined shear flow, Soft Matter, vol. 13, no. 7, pp. 1472–1480, 2017. DOI: 10.1039/c6sm02490d.
  • R. D. Groot, and P. B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys., vol. 107, no. 11, pp. 4423–4435, 1997. DOI: 10.1063/1.474784.
  • M. Ostoja-Starzewski, Lattice models in micromechanics, Appl. Mech. Rev., vol. 55, no. 1, pp. 35–60, 2002. DOI: 10.1115/1.1432990.
  • G. Wang, A. Al-Ostaz, A. H. D. Cheng, and P. R. Mantena, Hybrid lattice particle modeling: Theoretical considerations for a 2D elastic spring network for dynamic fracture simulations, Comput. Mater. Sci., vol. 44, no. 4, pp. 1126–1134, 2009. DOI: 10.1016/j.commatsci.2008.07.032.
  • T. Omori, et al., Comparison between spring network models and continuum constitutive laws: Application to the large deformation of a capsule in shear flow, Phys. Rev. E. Stat., vol. 83, no. 4, pp. 1–11, 2011., DOI: 10.1103/PhysRevE.83.041918.
  • M. Uchimali, B. C. Rao, and S. Vedantam, Constitutively informed multi-body interactions for lattice particle models, Comput Methods Appl. Mech. Eng., vol. 366, pp. 113052, 2020. DOI: 10.1016/j.cma.2020.113052.
  • L. Truskinovsky, and A. Vainchtein, Kinetics of martensitic phase transitions: lattice model, SIAM J. Appl. Math. ., vol. 66, no. 2, pp. 533–553, 2005. DOI: 10.1137/040616942.
  • A. Vainchtein, The role of spinodal region in the kinetics of lattice phase transitions, J. Mech. Phys. Solids., vol. 58, no. 2, pp. 227–240, 2010. DOI: 10.1016/j.jmps.2009.10.004.
  • M. Uchimali, B. C. Rao, and S. Vedantam, Modeling size and orientation effects on the morphology of microstructure formed in martensitic phase transformations using a novel discrete particle model, Acta Mater., vol. 205, pp. 116528, 2021. DOI: 10.1016/j.actamat.2020.116528.
  • S. Vedantam, and R. Abeyaratne, A Helmholtz free-energy function for a CuAlNi shape memory alloy, Int. J. Nonlinear Mech., vol. 40, no. 2-3, pp. 177–193, 2005. DOI: 10.1016/j.ijnonlinmec.2004.05.005.
  • J. L. Ericksen, On the CauchyBorn Rule, Math. Mech. Solids., vol. 13, no. 3-4, pp. 199–220, 2008. DOI: 10.1177/1081286507086898.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.