382
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Efficient flexible multibody dynamic analysis via improved C0 absolute nodal coordinate formulation-based element

, , , &
Pages 4125-4137 | Received 25 Feb 2021, Accepted 16 Apr 2021, Published online: 08 Jun 2021

References

  • J.G. De Jalon and E. Bayo, Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge, Springer Science & Business Media, 2012.
  • W. Pan and E. Haug, Dynamic simulation of general flexible multibody systems, J. Struct. Mech., vol. 27, no. 2, pp. 217–251, 1999.
  • E.J. Haug, Computer aided kinematics and dynamics of mechanical systems, Boston: Allyn and Bacon, 1989.
  • W. Schiehlen, Multibody system dynamics: Roots and perspectives, Multibody Syst. Dyn., vol. 1, no. 2, pp. 149–188, 1997. DOI: 10.1023/A:1009745432698.
  • M. Otter et al., An Object-Oriented Data Model for Multibody Systems. Advanced Multibody System Dynamics, Springer, vol. 20, pp. 19–48, 1993.
  • A.A. Shabana, Flexible multibody dynamics: review of past and recent developments, Multibody Syst. Dyn., vol. 1, no. 2, pp. 189–222, 1997. DOI: 10.1023/A:1009773505418.
  • J.A. Ambrósio and M.S. Pereira, Flexibility in Multibody Dynamics with Applications to Crashworthiness. Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, Springer, vol. 268, pp. 199–232, 1994.
  • R.I. Arsenal, Dynamic response of a high-speed slider-crank mechanism with an elastic connecting rod, J. Eng. Ind., vol. 97, no. 2 pp. 543, 1975.
  • S.K. Dwivedy and P. Eberhard, Dynamic analysis of flexible manipulators, a literature review, Mech. Mach. Theory, vol. 41, no. 7, pp. 749–777, 2006. DOI: 10.1016/j.mechmachtheory.2006.01.014.
  • M.W. Spong, Modeling and control of elastic joint robots, J. Dyn. Syst. Meas. Control, vol. 109, no. 4, pp. 310–318, 1987. DOI: 10.1115/1.3143860.
  • J. Ho and D. Herber, Development of dynamics and control simulation of large flexible space systems, J. Guidance Control Dyn., vol. 8, no. 3, pp. 374–383, 1985. DOI: 10.2514/3.19990.
  • T. Belytschko et al., Large displacement, transient analysis of space frames, Int. J. Numer. Meth. Eng., vol. 11, no. 1, pp. 65–84, 1977. DOI: 10.1002/nme.1620110108.
  • J. Ho, Direct path method for flexible multibody spacecraft dynamics, J. Spacecraft Rockets, vol. 14, no. 2, pp. 102–110, 1977. DOI: 10.2514/3.57167.
  • V. Modi et al., An approach to dynamics and control of orbiting flexible structures, Int. J. Numer. Meth. Eng., vol. 32, no. 8, pp. 1727–1748, 1991. DOI: 10.1002/nme.1620320813.
  • G. Gladwell, Solid Mechanics and Its Applications, vol. 193, Springer, 1996.
  • Y. Li, Coupled computational fluid dynamics/multibody dynamics method with application to wind turbine simulations, Renew. Energy, 2014.
  • R. Roberson, A form of the translational dynamical equations for relative motion in systems of many non-rigid bodies, Acta Mech., vol. 14, no. 4, pp. 297–308, 1972. DOI: 10.1007/BF01387376.
  • T. Belytschko and B. Hsieh, Non‐linear transient finite element analysis with convected co‐ordinates, Int. J. Numer. Methods Eng., vol. 7, no. 3, pp. 255–271, 1973. DOI: 10.1002/nme.1620070304.
  • L. Meirovitch, A new method of solution of the eigenvalue problem for gyroscopic systems, AIAA J., vol. 12, no. 10, pp. 1337–1342, 1974. DOI: 10.2514/3.49486.
  • J.O. Song and E.J. Haug, Dynamic analysis of planar flexible mechanisms, Comput. Methods Appl. Mech. Eng., vol. 24, no. 3, pp. 359–381, 1980. DOI: 10.1016/0045-7825(80)90070-5.
  • C. Rankin and F. Brogan, An element independent corotational procedure for the treatment of large rotations, J. Pressure Vessel Technol., vol. 108, no. 2, pp. 165–174, 1986. DOI: 10.1115/1.3264765.
  • T. Belytschko and L.W. Glaum, Applications of higher order corotational stretch theories to nonlinear finite element analysis, Comput. Struct., vol. 10, no. 1–2, pp. 175–182, 1979. DOI: 10.1016/0045-7949(79)90085-3.
  • A.A. Shabana and R.A. Wehage, A coordinate reduction technique for dynamic analysis of spatial substructures with large angular rotations, J. Struct. Mech., vol. 11, no. 3, pp. 401–431, 1983. DOI: 10.1080/03601218308907450.
  • M. Geradin et al., Finite element modeling concepts in multibody dynamics. In: Computer-aided analysis of rigid and flexible mechanical systems. Springer, Dordrecht, 1994. p. 233–284.
  • E. Bakr and A.A. Shabana, Geometrically nonlinear analysis of multibody systems, Comput. Struct., vol. 23, no. 6, pp. 739–751, 1986. DOI: 10.1016/0045-7949(86)90242-7.
  • A. Cardona and M. Geradin, Modelling of superelements in mechanism analysis, Int. J. Numer. Methods Eng., vol. 32, no. 8, pp. 1565–1593, 1991. DOI: 10.1002/nme.1620320805.
  • A.A. Shabana, Dynamics of multibody systems. Cambridge university press, 2013.
  • A. Shabana and R. Schwertassek, Equivalence of the floating frame of reference approach and finite element formulations, Int. J. Non Linear Mech., vol. 33, no. 3, pp. 417–432, 1998. DOI: 10.1016/S0020-7462(97)00024-3.
  • A.A. Shabana, Definition of the slopes and the finite element absolute nodal coordinate formulation, Multibody System Dyn., vol. 1, no. 3, pp. 339–348, 1997. DOI: 10.1023/A:1009740800463.
  • A.A. Shabana et al., Application of the absolute nodal coordinate formulation to large rotation and large deformation problems, J. Mech. Design, vol. 120, no. 2, pp. 188–195, 1998. DOI: 10.1115/1.2826958.
  • M. Berzeri and A.A. Shabana, Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation, J. Sound Vib., vol. 235, no. 4, pp. 539–565, 2000. DOI: 10.1006/jsvi.1999.2935.
  • J. Gerstmayr et al., Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems, J. Comput. Nonlinear Dyn., vol. 8, no. 3, pp. 031016, 2013. DOI: 10.1115/1.4023487.
  • J. Gerstmayr and H. Irschik, On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach, J. Sound Vib., vol. 318, no. 3, pp. 461–487, 2008. DOI: 10.1016/j.jsv.2008.04.019.
  • M. Omar and A. Shabana, A Two-Dimensional Shear Deformable Beam for Large Rotation and Deformation Problem, J. Sound Vib., vol. 243, 2001.
  • A.A. Shabana and R.Y. Yakoub, Three dimensional absolute nodal coordinate formulation for beam elements: theory, J. Mech. Design, vol. 123, no. 4, pp. 606–613, 2001. DOI: 10.1115/1.1410100.
  • O. Dmitrochenko and A. Mikkola, Two simple triangular plate elements based on the absolute nodal coordinate formulation, J. Comput. Nonlinear Dyn., vol. 3, no. 4, pp. 041012, 2008. DOI: 10.1115/1.2960479.
  • O. Dmitrochenko and D.Y. Pogorelov, Generalization of plate finite elements for absolute nodal coordinate formulation, Multibody Syst. Dyn., vol. 10, no. 1, pp. 17–43, 2003. DOI: 10.1023/A:1024553708730.
  • M. Vaziri Sereshk and M. Salimi, Comparison of finite element method based on nodal displacement and absolute nodal coordinate formulation (ANCF) in thin shell analysis, Int. J. Numer. Methods Biomed. Eng., vol. 27, no. 8, pp. 1185–1198, 2011. DOI: 10.1002/cnm.1348.
  • K. Dufva and A. Shabana, Analysis of thin plate structures using the absolute nodal coordinate formulation, Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn., vol. 219, no. 4, pp. 345–355, 2005. DOI: 10.1243/146441905X50678.
  • A.M. Mikkola and M.K. Matikainen, Development of elastic forces for a large deformation plate element based on the absolute nodal coordinate formulation, J. Comput. Nonlinear Dyn., vol. 1, no. 2, pp. 103–108, 2006. DOI: 10.1115/1.1961870.
  • A.M. Mikkola and A.A. Shabana, A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications, Multibody Syst. Dyn., vol. 9, no. 3, pp. 283–309, 2003. DOI: 10.1023/A:1022950912782.
  • L. Abbas et al., Plate/shell element of variable thickness based on the absolute nodal coordinate formulation, Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn., vol. 224, no. 2, pp. 127–141, 2010. DOI: 10.1243/14644193JMBD244.
  • J.T. Sopanen and A.M. Mikkola, Description of elastic forces in absolute nodal coordinate formulation, Nonlinear Dyn., vol. 34, no. 1/2, pp. 53–74, 2003. DOI: 10.1023/B:NODY.0000014552.68786.bc.
  • A. Olshevskiy et al., Three-and four-noded planar elements using absolute nodal coordinate formulation, Multibody Syst. Dyn., vol. 29, no. 3, pp. 255–269, 2013. DOI: 10.1007/s11044-012-9314-y.
  • A. Olshevskiy et al., Three-dimensional solid brick element using slopes in the absolute nodal coordinate formulation, J. Comput. Nonlinear Dyn., vol. 9, no. 2, pp. 021001, 2014. DOI: 10.1115/1.4024910.
  • A. Olshevskiy et al., Absolute nodal coordinate formulation of tetrahedral solid element, Nonlinear Dyn., vol. 88, no. 4, pp. 2457–2471, 2017. DOI: 10.1007/s11071-017-3389-1.
  • L. Kübler et al., Flexible multibody systems with large deformations and nonlinear structural damping using absolute nodal coordinates, Nonlinear Dyn., vol. 34, no. 1/2, pp. 31–52, 2003. DOI: 10.1023/B:NODY.0000014551.75105.b4.
  • A.L. Schwab and J.P. Meijaard, Comparison of three-dimensional flexible beam elements for dynamic analysis: finite element method and absolute nodal coordinate formulation, vol. 6, pp. 1341–1349, 2005. DOI: 10.1115/DETC2005-85104.
  • E.L. Wilson et al., Incompatible Displacement Models, Numer. and Comput. Methods in Struct. Mech., pp. 43–57, 1973.
  • R.L. Taylor et al., A non-conforming element for stress analysis, Int. J. Numer. Methods Eng., vol. 10, no. 6, pp. 1211–1219, 1976. DOI: 10.1002/nme.1620100602.
  • G. Berkooz et al., The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., vol. 25, no. 1, pp. 539–575, 1993. DOI: 10.1146/annurev.fl.25.010193.002543.
  • G. Kerschen et al., The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: An overview, Nonlinear Dyn., vol. 41, no. 1–3, pp. 147–169, 2005. DOI: 10.1007/s11071-005-2803-2.
  • Y.C. Liang et al., Proper orthogonal decomposition and its applications—Part I: Theory, J. Sound Vib., vol. 252, no. 3, pp. 527–544, 2002. DOI: 10.1006/jsvi.2001.4041.
  • ABAQUS/CAE User Manual. Abaqus 6.12 Documentation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.