139
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

An electroelastic constitutive model for dielectric elastomers based on the Langevin statistic and its instability characteristics

Pages 4319-4328 | Received 03 May 2020, Accepted 06 May 2021, Published online: 27 May 2021

References

  • R.E. Pelrine, R.D. Kornbluh, and J.P. Joseph, Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation, Sens. Actuators A., vol. 64, no. 1, pp. 77–85, 1998. DOI: 10.1016/S0924-4247(97)01657-9.
  • A. Dorfmann and R.W. Ogden, Nonlinear electroelasticity, Acta Mech., vol. 174, no. 3-4, pp. 167–183, 2005. DOI: 10.1007/s00707-004-0202-2.
  • M. Wissler and E. Mazza, Electromechanical coupling in dielectric elastomer actuators, Sens. Actuators, A, vol. 138, no. 2, pp. 384–393, 2007. DOI: 10.1016/j.sna.2007.05.029.
  • X. Zhao and Z. Suo, Electrostriction in elastic dielectrics undergoing large deformation, J. Appl. Phys., vol. 104, no. 12, pp. 123530, 2008. DOI: 10.1063/1.3031483.
  • R.M. McMeeking and C.M. Landis, Electrostatic forces and stored energy for deformable dielectric materials, J. Appl. Mech., vol. 72, no. 4, pp. 581–590, 2005. DOI: 10.1115/1.1940661.
  • R. Ortigosa and A.J. Gil, A new framework for large strain electromechanics based on convex multi-variable strain energies: Conservation laws, hyperbolicity and extension to electro-magneto-mechanics, Comput. Methods Appl. Mech. Eng., vol. 309, pp. 202–242, 2016. DOI: 10.1016/j.cma.2016.05.019.
  • M. Itskov, V.N. Khiêm, and S. Waluyo, Electroelasticity of dielectric elastomers based on molecular chain statistics, Math. Mech. Solids, vol. 24, no. 3, pp. 862–873, 2019..
  • M. Grasinger and K. Dayal, Statistical mechanical analysis of the electromechanical coupling in an electrically-responsive polymer chain, Soft Matter., vol. 16, no. 27, pp. 6265–6284, 2020. DOI: 10.1039/d0sm00845a.
  • W.H. Stockmayer, Dielectric dispersion in solutions of flexible polymers, Pure Appl. Chem., vol. 15, no. 3–4, pp. 539–554, 1967. DOI: 10.1351/pac196715030539.
  • B. Li, H. Chen, J. Qiang, and J. Zhou, A model for conditional polarization of the actuation enhancement of a dielectric elastomer, Soft Matter., vol. 8, no. 2, pp. 311–317, 2012. DOI: 10.1039/C1SM05847A.
  • N. Cohen, A. Menzel, and G. DeBotton, Towards a physics-based multiscale modelling of the electro-mechanical coupling in electro-active polymers, In: Proc. R. Soc. A., vol. 472, pp. 20150462, 2016. DOI: 10.1098/rspa.2015.0462.
  • M. Romeo, A microstretch continuum approach to model dielectric elastomers, Z Angew. Math. Phys., vol. 71, no. 2, pp. 1–13, 2020. DOI: 10.1007/s00033-020-1266-0.
  • W. Kuhn and F. Grün, Beziehungen zwischen elastischen konstanten und dehnungsdoppelbrechung hochelastischer stoffe, Kolloid-Zeitschrift, vol. 101, no. 3, pp. 248–271, 1942. DOI: 10.1007/BF01793684.
  • E. Carrera, S. Brischetto, C. Fagiano, and P. Nali, Mixed multilayered plate elements for coupled magneto-electro-elastic analysis, Multidiscipline Model. Mater. Struct., vol. 5, no. 3, pp. 251–256, 2009. DOI: 10.1163/157361109789017050.
  • S. Klinkel, S. Zwecker, and R. Müller, A solid shell finite element formulation for dielectric elastomers, J. Appl. Mech., vol. 80, no. 2, ISSN 0021-8936, 2013. DOI: 10.1115/1.4007435.
  • E. Carrera, S. Valvano, and G.M. Kulikov, Electro-mechanical analysis of composite and sandwich multilayered structures by shell elements with node-dependent kinematics, Int. J. Smart Nano Mater., vol. 9, no. 1, pp. 1–33, 2018. DOI: 10.1080/19475411.2017.1414084.
  • A.S. Pechstein, Large deformation mixed finite elements for smart structures, Mech. Adv. Mater. Struct., vol. 27, no. 23, pp. 1983–1993, 2020. DOI: 10.1080/15376494.2018.1536932.
  • J. Wyrwał, A. Marynowicz, and J. Świrska-Perkowska, Variational formulations for boundary problems of electrostriction, Mech. Adv. Mater. Struct., vol. 27, no. 20, pp. 1783–1785, 2020. DOI: 10.1080/15376494.2020.1741748.
  • R. Michael and R.H. Colby, Polymer Physics, vol. 23. Oxford University Press, New York, 2003.
  • J.-S. Plante and S. Dubowsky, Large-scale failure modes of dielectric elastomer actuators, Int. J. Solids Struct., vol. 43, no. 25–26, pp. 7727–7751, 2006. DOI: 10.1016/j.ijsolstr.2006.03.026.
  • J. Zhou, W. Hong, X. Zhao, Z. Zhang, and Z. Suo, Propagation of instability in dielectric elastomers, Int. J. Solids Struct., vol. 45, no. 13, pp. 3739–3750, 2008. DOI: 10.1016/j.ijsolstr.2007.09.031.
  • L. Zhang, Q. Wang, and X. Zhao, Mechanical constraints enhance electrical energy densities of soft dielectrics, Appl. Phys. Lett., vol. 99, no. 17, pp. 171906, 2011. DOI: 10.1063/1.3655910.
  • G. Zurlo, M. Destrade, D. DeTommasi, and G. Puglisi, Catastrophic thinning of dielectric elastomers, Phys. Rev. Lett., vol. 118, no. 7, pp. 078001, 2017. DOI: 10.1103/PhysRevLett.118.078001.
  • P. Greaney, M. Meere, and G. Zurlo, The out-of-plane behaviour of dielectric membranes: Description of wrinkling and pull-in instabilities, J. Mech. Phys. Solids, vol. 122, pp. 84–97, 2019.
  • A.R. Blythe and D. Bloor, Electrical Properties of Polymers, Cambridge University Press, New York, 2005.
  • A.E. Cohen, Force-extension curve of a polymer in a high-frequency electric field, Phys. Rev. Lett., vol. 91, no. 23, pp. 235506, 2003. DOI: 10.1103/PhysRevLett.91.235506.
  • Z.-B. Kuang, Internal energy variational principles and governing equations in electroelastic analysis, Int. J. Solids Struct., vol. 46, no. 3–4, pp. 902–911, 2009. DOI: 10.1016/j.ijsolstr.2008.10.001.
  • E.M. Arruda and M.C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids, vol. 41, no. 2, pp. 389–412, 1993. DOI: 10.1016/0022-5096(93)90013-6.
  • O.F. Mossotti, Memorie di matematica e di fisica della società italiana delle scienze residente in modena 24, Part II, vol. 49, 1850.
  • R. Clausius, Die mechanische behandlung der electricität, Springer-Verlag, Springer Fachmedien Wiesbaden, Germany, 2013.
  • X. Zhao, W. Hong, and Z. Suo, Electromechanical hysteresis and coexistent states in dielectric elastomers, Phys. Rev. B, vol. 76, no. 13, pp. 134113, 2007. DOI: 10.1103/PhysRevB.76.134113.
  • R. Toupin, The elastic dielectric, Indiana Univ. Math. J., vol. 5, no. 6, pp. 849–915, 1956. DOI: 10.1512/iumj.1956.5.55033.
  • M. Kroeger, Simple, admissible, and accurate approximants of the inverse langevin and brillouin functions, relevant for strong polymer deformations and flows, J. Non-Newtonian Fluid Mech., vol. 223, pp. 77–87, 2015.
  • M. Kollosche, J. Zhu, Z. Suo, and G. Kofod, Complex interplay of nonlinear processes in dielectric elastomers, Phys. Rev. E, vol. 85, no. 5, pp. 051801, 2012. DOI: 10.1103/PhysRevE.85.051801.
  • J. Huang, T. Li, C. Chiang Foo, J. Zhu, D.R. Clarke, and Z. Suo, Giant, voltage-actuated deformation of a dielectric elastomer under dead load, Appl. Phys. Lett., vol. 100, no. 4, pp. 041911, 2012. DOI: 10.1063/1.3680591.
  • S.M.A. Jiménez, and R.M. McMeeking, Deformation dependent dielectric permittivity and its effect on actuator performance and stability, Int. J. Non. Linear Mech., vol. 57, pp. 183–191, 2013. DOI: 10.1016/j.ijnonlinmec.2013.08.001.
  • J. Gao, Y. Wang, Y. Liu, X. Hu, X. Ke, L. Zhong, Y. He, and X. Ren. Enhancing dielectric permittivity for energy-storage devices through tricritical phenomenon, Sci. Rep., vol. 7, no. 1, pp. 1–10, 2017. DOI: 10.1038/srep40916.
  • T.G. McKay, E. Calius, and I.A. Anderson, The dielectric constant of 3M VHB: a parameter in dispute. In: Y. Bar-Cohen and T. Wallmersperger, editors, Electroactive Polymer Actuators and Devices (EAPAD) 2009, International Society for Optics and Photonics, SPIE, Bellingham, Washington, USA, vol. 7287, pp. 209–218, 2009.
  • H.R. Choi, et al., Effects of prestrain on behavior of dielectric elastomer actuator. In: Yoseph Bar-Cohen, editor, Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD), International Society for Optics and Photonics, SPIE, Bellingham, Washington, USA, vol. 5759, pp. 283–291, 2005.
  • W. Ma and L. Cross, An experimental investigation of electromechanical response in a dielectric acrylic elastomer, Appl. Phys. A, vol. 78, no. 8, pp. 1201–1204, 2004. DOI: 10.1007/s00339-003-2197-2.
  • B. Li, L. Liu, and Z. Suo, Extension limit, polarization saturation, and snap-through instability of dielectric elastomers, Int. J. Smart Nano Mater., vol. 2, no. 2, pp. 59–67, 2011. DOI: 10.1080/19475411.2011.567306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.