321
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Hygro-thermo-mechanical based bending analysis of symmetric and unsymmetric power-law, exponential and sigmoidal FG sandwich beams

ORCID Icon, , & ORCID Icon
Pages 4523-4545 | Received 27 Mar 2021, Accepted 16 May 2021, Published online: 01 Jun 2021

References

  • A. Garg and H. D. Chalak, A review on analysis of laminated composite and sandwich structures under hygrothermal conditions, Thin-Walled Struct., vol. 142, pp. 205–226, 2019. DOI: 10.1016/j.tws.2019.05.005.
  • A. S. Sayyad and Y. M. Ghugal, On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results, Compos Struct., vol. 129, pp. 177–201, 2015. DOI: 10.1016/j.compstruct.2015.04.007.
  • R. K. Kapania, A review on the analysis of laminated shells, J. Press Vessel Technol., vol. 111, no. 2, pp. 88–96, 1989. DOI: 10.1115/1.3265662.
  • A. Garg and H. D. Chalak, Analysis of non-skew and skew laminated composite and sandwich plates under hygro-thermo-mechanical conditions including transverse stress variations, J. Sandw. Struct. Mater., pp. 109963622093278, 2020. DOI: 10.1177/1099636220932782.
  • M. Patni, S. Minera, R.M.J. Groh, A. Pirrera, P.M. Weaver, Three-dimensional stress analysis for laminated composite and sandwich structures, Compos. Part B Eng., vol. 155, pp. 299–328, 2018. DOI: 10.1016/j.compositesb.2018.08.127.
  • R. Sharma, V. K. Jadon, and B. Singh, A review on the finite element methods for heat conduction in functionally graded materials, J. Inst. Eng. Ser. C, vol. 96, pp. 73–81, 2015. DOI: 10.1007/s40032-014-0125-1.
  • B. V. Sankar, An elasticity solution for functionally graded beams, Compos. Sci. Technol., vol. 61, no. 5, pp. 689–696, 2001. DOI: 10.1016/S0266-3538(01)00007-0.
  • S. Venkataraman and B. V. Sankar, Elasticity solution for stresses in a sandwich beam with functionally graded core, AIAA J., vol. 41, no. 12, pp. 2501–2505, 2003. DOI: 10.2514/2.6853.
  • S. Venkataraman and B. Sankar, 2001. Analysis of sandwich beams with functionally graded core, In: 19th AIAA Applied Aerodynamics Conference, American Institute of Aeronautics and Astronautics, Reston, Virigina DOI: 10.2514/6.2001-1281.
  • G. H. Rahimi and A. R. Davoodinik, Thermal behavior analysis of the functionally graded Timoshenko’s beam, IUST Int. J. Eng. Sci., vol. 19, no. 1–5, pp. 105–113, 2008. https://www.sid.ir/en/journal/ViewPaper.aspx?id=167162.
  • H.-T. Thai, T.-K. Nguyen, T. P. Vo, and J. Lee, Analysis of functionally graded sandwich plates using a new first-order shear deformation theory, Eur. J. Mech. A/Solids, vol. 45, pp. 211–225, 2014. DOI: 10.1016/j.euromechsol.2013.12.008.
  • L. S. Ma and D. W. Lee, Exact solutions for nonlinear static responses of a shear deformable FGM beam under an in-plane thermal loading, Eur. J. Mech. A/Solids, vol. 31, no. 1, pp. 13–20, 2012. DOI: 10.1016/j.euromechsol.2011.06.016.
  • L. S. Ma and D. W. Lee, A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading, Compos. Struct., vol. 93, no. 2, pp. 831–842, 2011. DOI: 10.1016/j.compstruct.2010.07.011.
  • P. F. Pai, A new look at shear correction factors and warping functions of anisotropic laminates, Int. J. Solids Struct., vol. 32, no. 16, pp. 2295–2313, 1995. DOI: 10.1016/0020-7683(94)00258-X.
  • M. Filippi, E. Carrera, and A. M. Zenkour, Static analyses of FGM beams by various theories and finite elements, Compos. Part B Eng., vol. 72, pp. 1–9, 2015. DOI: 10.1016/j.compositesb.2014.12.004.
  • A. Bouadi, A. A. Bousahla, M. S. A. Houari, H. Heireche and A. Tounsi, A new nonlocal HSDT for analysis of stability of single layer graphene sheet, Adv. Nano Res., vol. 6, pp. 147–162, 2018. DOI: 10.12989/anr.2018.6.2.147.
  • A. Menasria, A. Bouhadra, A. Tounsi, A. A. Bousahla and S. R. Mahmoud, A new and simple HSDT for thermal stability analysis of FG sandwich plates, Steel Compos. Struct., 2017. DOI: 10.12989/scs.2017.25.2.157.
  • A. M. Zenkour and M. H. Aljadani, Mechanical buckling of functionally graded plates using a refined higher-order shear and normal deformation plate theory, Adv. Aircraft Spacecraft Sci., vol. 5, no. 6, pp. 615–632, 2018. DOI: 10.12989/aas.2018.5.6.615.
  • M. Bouazza and A. M. Zenkour, Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theory, Arch. Appl. Mech., vol. 90, no. 8, pp. 1755–1769, 2020. DOI: 10.1007/s00419-020-01694-3.
  • M. Bouazza and A. M. Zenkour, Hygrothermal environmental effect on free vibration of laminated plates using nth-order shear deformation theory, Waves Random Complex Media, 2021. DOI: 10.1080/17455030.2021.1909173.
  • L. C. Trinh, T. P. Vo, A. I. Osofero, and J. Lee, Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach, Compos Struct., vol. 156, pp. 263–275, 2016. DOI: 10.1016/j.compstruct.2015.11.010.
  • A. I. Osofero, T. P. Vo, T. K. Nguyen, and J. Lee, Analytical solution for vibration and buckling of functionally graded sandwich beams using various quasi-3D theories, J. Sandwich Struct. Mater., vol. 18, no. 1, pp. 3–29, 2016. DOI: 10.1177/1099636215582217.
  • T.-K. Nguyen and B.-D. Nguyen, A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams, J. Sandwich Struct. Mater., vol. 17, no. 6, pp. 613–631, 2015. DOI: 10.1177/1099636215589237.
  • T. T. Tran, N. H. Nguyen, T. V. Do, P. V. Minh and N. D. Duc, Bending and thermal buckling of unsymmetric functionally graded sandwich beams in high-temperature environment based on a new third-order shear deformation theory, J. Sandwich Struct. Mater., pp. 109963621984926, 2019. DOI: 10.1177/1099636219849268.
  • P.V. Thuc, H. T. Thai, T. K. Nguyen, F. Inam and J. Lee, Static behaviour of functionally graded sandwich beams using a quasi-3D theory, Compos. Part B Eng., 2015. DOI: 10.1016/j.compositesb.2014.08.030.
  • M. Bouazza, N. Benseddiq, and A. M. Zenkour, Thermal buckling analysis of laminated composite beams using hyperbolic refined shear deformation theory, J Therm. Stresses, vol. 42, no. 3, pp. 332–340, 2019. DOI: 10.1080/01495739.2018.1461042.
  • M. Sobhy and A. M. Zenkour, Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory, Compos. Struct., vol. 220, pp. 289–303, 2019. DOI: 10.1016/j.compstruct.2019.03.096.
  • A. M. Zenkour, Quasi-3D refined theory for functionally graded porous plates: Displacements and stresses, Phys. Mesomech., vol. 23, no. 1, pp. 39–53, 2020. DOI: 10.1134/S1029959920010051.
  • M. Bouazza and A. M. Zenkour, Hygro-thermo-mechanical buckling of laminated beam using hyperbolic refined shear deformation theory, Compos. Struct., vol. 252, pp. 112689, 2020. DOI: 10.1016/j.compstruct.2020.112689.
  • A. M. Zenkour and M. H. Aljadani, Buckling analysis of actuated functionally graded piezoelectric plates via a quasi-3D refined theory, Mech. Mater., vol. 151, pp. 103632, 2020. DOI: 10.1016/j.mechmat.2020.103632.
  • M. Sobhy and A. M. Zenkour, Wave propagation in magneto-porosity FG bi-layer nanoplates based on a novel quasi-3D refined plate theory, Waves Random Complex Media, pp. 1–21, 2019. DOI: 10.1080/17455030.2019.1634853.
  • O. Belarbi, M. S. A. Houari, A. A. Daikh, A. Garg, T. Merzouki, H. D. Chalak and H. Hirane, Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory, Comp Struct., vol. 264, pp. 113712, 2021. DOI: 10.1016/j.compstruct.2021.113712.
  • A. S. Sayyad and P. V. Avhad, On static bending, elastic buckling and free vibration analysis of symmetric functionally graded sandwich beams, J. Solid Mech., vol. 11, pp. 166–180, 2019. DOI: 10.22034/JSM.2019.664227.
  • A. S. Sayyad and Y. M. Ghugal, Modeling and analysis of functionally graded sandwich beams: a review, Mech. Adv. Mater. Struct., vol. 26, no. 21, pp. 1776–1795, 2019. DOI: 10.1080/15376494.2018.1447178.
  • D. K. Jha, T. Kant, and R. K. Singh, A critical review of recent research on functionally graded plates, Compos Struct., vol. 96, pp. 833–849, 2013. DOI: 10.1016/j.compstruct.2012.09.001.
  • K. M. Liew, X. Zhao, and A. J. M. Ferreira, A review of meshless methods for laminated and functionally graded plates and shells, Compos Struct., vol. 93, no. 8, pp. 2031–2041, 2011. DOI: 10.1016/j.compstruct.2011.02.018.
  • A. K. Noor, and M. Malik, Assessment of five modeling approaches for thermo-mechanical stress analysis of laminated composite panels, Comput Mech., vol. 25, no. 1, pp. 43–58, 2000. DOI: 10.1007/s004660050014.
  • I. Kreja, A literature review on computational models for laminated composite and sandwich panels, Cent Eur J Eng., vol. 1, pp. 59–80, 2011. DOI: 10.2478/s13531-011-0005-x.
  • K. Swaminathan, D. T. Naveenkumar, A. M. Zenkour, and E. Carrera, Stress, vibration and buckling analyses of FGM plates-A state-of-the-art review, Compos Struct., vol. 120, pp. 10–31, 2015. DOI: 10.1016/j.compstruct.2014.09.070.
  • M. F. Caliri, A. J. M. Ferreira, and V. Tita, A review on plate and shell theories for laminated and sandwich structures highlighting the Finite Element Method, Compos Struct., vol. 156, pp. 63–77, 2016. DOI: 10.1016/j.compstruct.2016.02.036.
  • A. M. Zenkour, A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities, Compos Struct., vol. 201, pp. 38–48, 2018. DOI: 10.1016/j.compstruct.2018.05.147.
  • A. Garg, M. O. Belarbi, H. D. Chalak, and A. Chakrabarti, A review of the analysis of sandwich FGM structures, Compos. Struct., vol. 258, pp. 113427, 2021. DOI: 10.1016/j.compstruct.2020.113427.
  • H. Hirane, M. O. Belarbi, M. S. A. Houari, and A. Tounsi, On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates, Eng. Comput., 2021. DOI: 10.1007/s00366-020-01250-1.
  • M. O. Belarbi, A. Khechai, A. Bessaim, M. S. A. Houari, A. Garg, H. Hirane and H. D. Chalak, Finite element bending analysis of symmetric and non-symmetric functionally graded sandwich beams using a novel parabolic shear deformation theory, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2021. DOI: 10.1177/14644207211005096.
  • A. Chakrabarti, H. D. Chalak, M. Ashraf, and A. Hamid, A new FE model based on higher order zigzag theory for the analysis of laminated sandwich beam with soft core, Compos Struct., vol. 93, no. 2, pp. 271–279, 2011. DOI: 10.1016/j.compstruct.2010.08.031.
  • A. H. Sheikh and A. Chakrabarti, A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates, Finite Elem. Anal. Des., vol. 39, no. 9, pp. 883–903, 2003. DOI: 10.1016/S0168-874X(02)00137-3.
  • S. Pandey and S. Pradyumna, Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory, Eur. J. Mech. A/Solids, vol. 51, pp. 55–66, 2015. DOI: 10.1016/j.euromechsol.2014.12.001.
  • S. Pandey and S. Pradyumna, Analysis of functionally graded sandwich plates using a higher-order layerwise theory, Compos. Part B Eng., vol. 153, pp. 325–336, 2018. DOI: 10.1016/j.compositesb.2018.08.121.
  • M. O. Belarbi, T. Abdelouahab, O. Houdayfa, and B. Adel, Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates, Struct. Eng. Mech., vol. 57, no. 3, pp. 473–506, 2016. DOI: 10.12989/sem.2016.57.3.473.
  • M. O. Belarbi, A. M. Zenkour, A. Tati, S. J. Salami, A. Khechai, and M. S. A. Houari, An efficient eight‐node quadrilateral element for free vibration analysis of multilayer sandwich plates, Int. J. Numer. Methods Eng., vol. 122, no. 9, pp. 2360–2387, 2021. DOI: 10.1002/nme.6624.
  • H. D. Chalak, A. Chakrabarti, A. H. Sheikh, and M. A. Iqbal, C0 FE model based on HOZT for the analysis of laminated soft core skew sandwich plates: Bending and vibration, Appl Math Model., vol. 38, no. 4, pp. 1211–1223, 2014. DOI: 10.1016/j.apm.2013.08.005.
  • E. Carrera, Historical review of Zig-Zag theories for multilayered plates and shells, Appl. Mech. Rev., vol. 56, no. 3, pp. 287–308, 2003. DOI: 10.1115/1.1557614.
  • A. M. A. Neves, A. J. M. Ferreira, E. Carrera, M. Cinefra R. M. N. Jorge and C. M. M. Soares, Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping effects, Adv. Eng. Softw., vol. 52, pp. 30–43, 2012. DOI: 10.1016/j.advengsoft.2012.05.005.
  • A. M. A. Neves, A. J. M. Ferreira, E. Carrera, et al., Influence of zig-zag and warping effects on buckling of functionally graded sandwich plates according to sinusoidal shear deformation theories, Mech. Adv. Mater. Struct., vol. 24, no. 5, pp. 360–376, 2017. DOI: 10.1080/15376494.2016.1191095.
  • A. Garg, H. D. Chalak, and A. Chakrabarti, Bending analysis of functionally graded sandwich plates using HOZT including transverse displacement effects, Mech. Based Des. Struct. Mach., pp. 1–15, 2020. DOI: 10.1080/15397734.2020.1814157.
  • A. Garg, H. D. Chalak, and A. Chakrabarti, Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory, Mech. Mater., vol. 151, pp. 103634, 2020. DOI: 10.1016/j.mechmat.2020.103634.
  • A. K. Noor and W. S. Burton, Computational models for high-temperature multilayered composite plates and shells, Appl. Mech. Rev., vol. 45, no. 10, pp. 419–446, 1992. DOI: 10.1115/1.3119742.
  • A. Garg and H. D. Chalak, Novel higher-order zigzag theory for analysis of laminated sandwich beams, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 235, no. 1, pp. 176–194, 2021. DOI: 10.1177/1464420720957045.
  • N. B. A. Duy. Analysis of functionally graded sandwich beams under hygro-thermo-mechanical loads. Ho Chi Minh City University of Technology and Education, Vietnam, 2019.
  • S. Kapuria, P. C. Dumir, and A. Ahmed, An efficient higher order zigzag theory for composite and sandwich beams subjected to thermal loading, Int. J. Solids Struct., vol. 40, no. 24, pp. 6613–6631, 2003. DOI: 10.1016/j.ijsolstr.2003.08.014.
  • A. M. Zenkour, A comprehensive analysis of functionally graded sandwich plates: Part 2—Buckling and free vibration, Int. J. Solids Struct., vol. 42, no. 18–19, pp. 5243–5258, 2005. DOI: 10.1016/j.ijsolstr.2005.02.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.