219
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of temperature-dependent layered shells subjected to thermomechanical loading

, , &
Pages 4865-4877 | Received 30 Apr 2021, Accepted 05 Jun 2021, Published online: 30 Jun 2021

References

  • T. Hause and L. Librescu, Doubly-curved anisotropic sandwich panels: Modeling and free vibration, J. Aircr., vol. 44, no. 4, pp. 1327–1336, 2007. DOI: 10.2514/1.26990.
  • H.C. Jo, J.H. Kim, S.K. Lee, K.W. Lee, S.H. Oh, and Y.M. Lim, Development of construction technique of LNG storage tank wall using precast concrete panels, IOP Conf. Ser.: Mater. Sci. Eng., vol. 431, no. 5, pp. 052010, 2018. DOI: 10.1088/1757-899X/431/5/052010.
  • J.B. Yan, J.Y.R. Liew, M.H. Zhang, and K.M.A. Sohel, Experimental and analytical study on ultimate strength behavior of steel–concrete–steel sandwich composite beam structures, Mater. Struct., vol. 48, no. 5, pp. 1523–1544, 2015. DOI: 10.1617/s11527-014-0252-4.
  • A. Pourkeramat, A. Daneshmehr, S. Jalili, and K. Aminfar, Investigation of wind and smoke concentration effects on thermal instability of cylindrical tanks with fixed roof subjected to an adjacent fire, Thin-Walled Struct., vol. 160, pp. 107384, 2021. DOI: 10.1016/j.tws.2020.107384.
  • Z. Zhang, W. Zhou, D. Zhou, R. Huo, and X. Xu, Elasticity solution of laminated beams with temperature-dependent material properties under a combination of uniform thermo-load and mechanical loads, J. Cent. South Univ., vol. 25, no. 10, pp. 2537–2549, 2018. DOI: 10.1007/s11771-018-3934-1.
  • Z. Zhang, D. Zhou, H. Fang, J. Zhang, and X. Li, Analysis of layered rectangular plates under thermo-mechanical loads considering temperature-dependent material properties, Appl. Math. Model., vol. 92, pp. 244–260, 2021. DOI: 10.1016/j.apm.2020.10.036.
  • Z. Zhang, D. Zhou, X. Xu, and X. Li, Analysis of thick beams with temperature-dependent material properties under thermomechanical loads, Adv. Struct. Eng., vol. 23, no. 9, pp. 1838–1850, 2020. DOI: 10.1177/1369433220901810.
  • Z. Zhang, D. Zhou, H. Fang, J. Zhang, and X. Li, Analysis of laminated beams with temperature-dependent material properties subjected to thermal and mechanical loads, Compos. Struct., vol. 227, pp. 111304, 2019. DOI: 10.1016/j.compstruct.2019.111304.
  • H.-T. Thai and S.-E. Kim, A review of theories for the modeling and analysis of functionally graded plates and shells, Compos. Struct., vol. 128, pp. 70–86, 2015. DOI: 10.1016/j.compstruct.2015.03.010.
  • D. Punera and T. Kant, A critical review of stress and vibration analyses of functionally graded shell structures, Compos. Struct., vol. 210, pp. 787–809, 2019. DOI: 10.1016/j.compstruct.2018.11.084.
  • E. Carrera, Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking, ARCO, vol. 10, no. 3, pp. 215–296, 2003. DOI: 10.1007/BF02736224.
  • J.N. Reddy and R.A. Arciniega, Shear deformation plate and shell theories: From Stavsky to present, Mech. Adv. Mater. Struct., vol. 11, no. 6, pp. 535–582, 2004. DOI: 10.1080/15376490490452777.
  • E. Carrera, M. Cinefra, and F.A. Fazzolari, Some results on thermal stress of layered plates and shells by using unified formulation, J. Therm. Stress., vol. 36, no. 6, pp. 589–625, 2013. DOI: 10.1080/01495739.2013.784122.
  • H.-L. Dai and T. Dai, Analysis for the thermoelastic bending of a functionally graded material cylindrical shell, Meccanica, vol. 49, no. 5, pp. 1069–1081, 2014. DOI: 10.1007/s11012-013-9853-1.
  • H.L. Dai and H.J. Jiang, Magnetothermoelastic bending analysis of a functionally graded material cylindrical shell, Mech. Adv. Mater. Struct., vol. 22, no. 4, pp. 281–289, 2015. DOI: 10.1080/15376494.2012.736057.
  • A.A. Khdeir, Thermally induced vibrations of cross-ply laminated shallow shells, Acta Mech., vol. 151, no. 3-4, pp. 135–147, 2001. no DOI: 10.1007/BF01246913.
  • Z.-M. Li and P. Qiao, Buckling and postbuckling of anisotropic laminated cylindrical shells under combined external pressure and axial compression in thermal environments, Compos. Struct., vol. 119, pp. 709–726, 2015. DOI: 10.1016/j.compstruct.2014.09.039.
  • S. Maleki and M. Tahani, Non-linear analysis of fiber-reinforced open conical shell panels considering variation of thickness and fiber orientation under thermo-mechanical loadings, Compos. Part B Eng., vol. 52, pp. 245–261, 2013. DOI: 10.1016/j.compositesb.2013.04.026.
  • S. Sahmani and A.M. Fattahi, Size-dependent nonlinear instability of shear deformable cylindrical nanopanels subjected to axial compression in thermal environments, Microsyst. Technol., vol. 23, no. 10, pp. 4717–4731, 2017. DOI: 10.1007/s00542-016-3220-9.
  • A.A. Khdeir, M.D. Rajab, and J.N. Reddy, Thermal effects on the response of cross-ply laminated shallow shells, Int. J. Solids Struct., vol. 29, no. 5, pp. 653–667, 1992. DOI: 10.1016/0020-7683(92)90059-3.
  • S. Brischetto, Hygrothermoelastic analysis of multilayered composite and sandwich shells, J. Sandw. Struct. Mater., vol. 15, no. 2, pp. 168–202, 2013. DOI: 10.1177/1099636212471358.
  • D. Van Dung, N.T. Nga, and P.M. Vuong, Nonlinear stability analysis of stiffened functionally graded material sandwich cylindrical shells with general Sigmoid law and power law in thermal environment using third-order shear deformation theory, J. Sandw. Struct. Mater., vol. 21, no. 3, pp. 938–972, 2019. DOI: 10.1177/1099636217704863.
  • A.S. Sayyad and Y.M. Ghugal, Static and free vibration analysis of laminated composite and sandwich spherical shells using a generalized higher-order shell theory, Compos. Struct., vol. 219, pp. 129–146, 2019. DOI: 10.1016/j.compstruct.2019.03.054.
  • B.M. Shinde and A.S. Sayyad, Thermoelastic analysis of laminated composite and sandwich shells considering the effects of transverse shear and normal deformations, J. Therm. Stress., vol. 43, no. 10, pp. 1234–1257, 2020. DOI: 10.1080/01495739.2020.1786484.
  • D. Punera, T. Kant, and Y.M. Desai, Thermoelastic analysis of laminated and functionally graded sandwich cylindrical shells with two refined higher order models, J. Therm. Stress., vol. 41, no. 1, pp. 54–79, 2018. DOI: 10.1080/01495739.2017.1373379.
  • J.N. Reddy and C.F. Liu, A higher-order shear deformation theory of laminated elastic shells, Int. J. Eng. Sci., vol. 23, no. 3, pp. 319–330, 1985. DOI: 10.1016/0020-7225(85)90051-5.
  • A.A. Khdeir, Thermoelastic analysis of cross-ply laminated circular cylindrical shells, Int. J. Solids Struct., vol. 33, no. 27, pp. 4007–4017, 1996. DOI: 10.1016/0020-7683(95)00229-4.
  • K. Ding, Thermal stresses of weak formulation study for thick open laminated shell, J. Therm. Stress., vol. 31, no. 4, pp. 389–400, 2008. DOI: 10.1080/01495730801912454.
  • D. Kewei, Weak formulation study for thermoelastic analysis of thick open laminated shell, Mech. Adv. Mater. Struct., vol. 15, no. 1, pp. 33–39, 2008. DOI: 10.1080/15376490701410588.
  • A. Alibeigloo, Exact solution of an FGM cylindrical panel integrated with sensor and actuator layers under thermomechanical load, Smart Mater. Struct., vol. 20, no. 3, pp. 035002, 2011. DOI: 10.1088/0964-1726/20/3/035002.
  • H. Qian, S.-H. Lo, D. Zhou, and Y. Yang, 3-D thermo-stress field in laminated cylindrical shells, Comput. Model. Eng. Sci., vol. 121, no. 1, pp. 215–247, 2019. DOI: 10.32604/cmes.2019.07922.
  • H. Qian, D. Zhou, J. Yin, and Y. Qiu, A theoretical investigation on the thermal response of laminated cylindrical panel, Arch. Appl. Mech., vol. 90, no. 3, pp. 475–493, 2020. DOI: 10.1007/s00419-019-01621-1.
  • H.S. Shen, Buckling and postbuckling of anisotropic laminated cylindrical shells with piezoelectric fiber reinforced composite actuators, Mech. Adv. Mater. Struct., vol. 17, no. 4, pp. 268–279, 2010. DOI: 10.1080/15376490903556592.
  • H.S. Shen, Thermal postbuckling behavior of anisotropic laminated cylindrical shells with temperature-dependent properties, AIAA J., vol. 46, no. 1, pp. 185–193, 2008. DOI: 10.2514/1.31192.
  • H. Shen, Hygrothermal effects on the postbuckling of composite laminated cylindrical shells, Compos. Sci. Technol., vol. 60, no. 8, pp. 1227–1240, 2000. DOI: 10.1016/S0266-3538(00)00062-2.
  • H. Van Tung, Postbuckling of functionally graded cylindrical shells with tangential edge restraints and temperature-dependent properties, Acta Mech., vol. 225, no. 6, pp. 1795–1808, 2014. DOI: 10.1007/s00707-013-1011-2.
  • B. Mirzavand and H. Pourmohammad, Post-buckling analysis of non-uniformly heated functionally graded cylindrical shells enhanced by shape memory alloys using classical lamination theory, J. Intell. Mater. Syst. Struct., vol. 30, no. 16, pp. 2421–2435, 2019. DOI: 10.1177/1045389X19861794.
  • B. Mirzavand, P. Rezapour, and M. Bohlooly, Thermal buckling of shallow/nonshallow piezoelectric-composite cylindrical shells, Mech. Adv. Mater. Struct., vol. 23, no. 10, pp. 1236–1243, 2016. DOI: 10.1080/15376494.2015.1068403.
  • P.T. Hieu and H. Van Tung, Nonlinear buckling behavior of functionally graded material sandwich cylindrical shells with tangentially restrained edges subjected to external pressure and thermal loadings, J. Sandw. Struct. Mater., 2020. DOI: 10.1177/1099636220908855.
  • J. Yang, K.M. Liew, Y.F. Wu, and S. Kitipornchai, Thermo-mechanical post-buckling of FGM cylindrical panels with temperature-dependent properties, Int. J. Solids Struct., vol. 43, no. 2, pp. 307–324, 2006. DOI: 10.1016/j.ijsolstr.2005.04.001.
  • R. Kadoli and N. Ganesan, Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary condition, J. Sound Vib., vol. 289, no. 3, pp. 450–480, 2006. DOI: 10.1016/j.jsv.2005.02.034.
  • M.C. Trinh and S.E. Kim, Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment, Aerosp. Sci. Technol., vol. 84, pp. 672–685, 2019. DOI: 10.1016/j.ast.2018.09.018.
  • S. Trabelsi, A. Frikha, S. Zghal, and F. Dammak, Thermal post-buckling analysis of functionally graded material structures using a modified FSDT, Int. J. Mech. Sci., vol. 144, pp. 74–89, 2018. DOI: 10.1016/j.ijmecsci.2018.05.033.
  • H. Babaei, Y. Kiani, and M.R. Eslami, Application of two-steps perturbation technique to geometrically nonlinear analysis of long FGM cylindrical panels on elastic foundation under thermal load, J. Therm. Stress., vol. 41, no. 7, pp. 847–865, 2018. DOI: 10.1080/01495739.2017.1421054.
  • H.-S. Shen and Y. Xiang, Nonlinear bending of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments, Eng. Struct., vol. 80, pp. 163–172, 2014. DOI: 10.1016/j.engstruct.2014.08.038.
  • Y.X. Hao, Z. Cao, W. Zhang, J. Chen, and M.H. Yao, Stability analysis for geometric nonlinear functionally graded sandwich shallow shell using a new developed displacement field, Compos. Struct., vol. 210, pp. 202–216, 2019. DOI: 10.1016/j.compstruct.2018.11.027.
  • D.D. Nguyen, Nonlinear thermo- electro-mechanical dynamic response of shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations, J. Sandw. Struct. Mater., vol. 20, no. 3, pp. 351–378, 2018. DOI: 10.1177/1099636216653266.
  • J. Sun, X. Xu, C.W. Lim, and W. Qiao, Accurate buckling analysis for shear deformable FGM cylindrical shells under axial compression and thermal loads, Compos. Struct., vol. 123, pp. 246–256, 2015. DOI: 10.1016/j.compstruct.2014.12.030.
  • J. Sun, X. Xu, C.W. Lim, Z. Zhou, and S. Xiao, Accurate thermo-electro-mechanical buckling of shear deformable piezoelectric fiber-reinforced composite cylindrical shells, Compos. Struct., vol. 141, pp. 221–231, 2016. DOI: 10.1016/j.compstruct.2016.01.054.
  • N.D. Duc, N.D. Tuan, P. Tran, N.T. Dao, and N.T. Dat, Nonlinear dynamic analysis of Sigmoid functionally graded circular cylindrical shells on elastic foundations using the third order shear deformation theory in thermal environments, Int. J. Mech. Sci., vol. 101–102, pp. 338–348, 2015. vol DOI: 10.1016/j.ijmecsci.2015.08.018.
  • H.-S. Shen and Y. Xiang, Thermal buckling and postbuckling behavior of FG-GRC laminated cylindrical shells with temperature-dependent material properties, Meccanica, vol. 54, no. 1-2, pp. 283–297, 2019. no DOI: 10.1007/s11012-019-00945-0.
  • H.S. Shen, J.N. Reddy, and Y. Yu, Postbuckling of doubly curved FG-GRC laminated panels subjected to lateral pressure in thermal environments, Mech. Adv. Mater. Struct., vol. 28, no. 3, pp. 260–270, 2021. DOI: 10.1080/15376494.2018.1556827.
  • M. Rout, S.S. Hota, and A. Karmakar, Thermoelastic free vibration response of graphene reinforced laminated composite shells, Eng. Struct., vol. 178, pp. 179–190, 2019. DOI: 10.1016/j.engstruct.2018.10.029.
  • P. Malekzadeh and M. Ghaedsharaf, Three-dimensional thermoelastic analysis of finite length laminated cylindrical panels with functionally graded layers, Meccanica, vol. 49, no. 4, pp. 887–906, 2014. DOI: 10.1007/s11012-013-9836-2.
  • S.S. Vel, Exact thermoelastic analysis of functionally graded anisotropic hollow cylinders with arbitrary material gradation, Mech. Adv. Mater. Struct., vol. 18, no. 1, pp. 14–31, 2011. DOI: 10.1080/15376494.2010.519218.
  • Y. Heydarpour, P. Malekzadeh, M.R. Golbahar Haghighi, and M. Vaghefi, Thermoelastic analysis of rotating laminated functionally graded cylindrical shells using layerwise differential quadrature method, Acta Mech., vol. 223, no. 1, pp. 81–93, 2012. DOI: 10.1007/s00707-011-0551-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.