131
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of functionally graded plates based on a variable separation method

ORCID Icon, , &
Pages 4890-4901 | Received 08 Apr 2021, Accepted 09 Jun 2021, Published online: 13 Jul 2021

References

  • M. Naebe and K. Shirvanimoghaddam, Functionally graded materials: A review of fabrication and properties, Appl. Mater. Today, vol. 5, pp. 223–245, 2016. DOI: 10.1016/j.apmt.2016.10.001.
  • R. Parihar, S. Setti, and R. Sahu, Recent advances in the manufacturing processes of functionally graded materials: A review, Sci. Eng. Compos. Mater., vol. 25, no. 2, pp. 309–336, 2018. DOI: 10.1515/secm-2015-0395.
  • V. Birman and L. W. Byrd, Modeling and analysis of functionally graded materials and structures, Appl. Mech. Rev., vol. 60, no. 5, pp. 195–216, 2007. DOI: 10.1115/1.2777164.
  • A. Gupta and M. Talha, Recent development in modeling and analysis of functionally graded materials and structures, Prog. Aerosp. Sci., vol. 79, pp. 1–14, 2015. DOI: 10.1016/j.paerosci.2015.07.001.
  • M. Kashtalyan, Three-dimensional elasticity solution for bending of functionally graded rectangular plates, Eur. J. Mech. A Solids, vol. 23, no. 5, pp. 853–864, 2004. DOI: 10.1016/j.euromechsol.2004.04.002.
  • M. Kashtalyan and M. Menshykova, Three-dimensional elasticity solution for sandwich panels with a functionally graded core, Compos. Struct., vol. 87, no. 1, pp. 36–43, 2009. DOI: 10.1016/j.compstruct.2007.12.003.
  • V. Burlayenko and T. Sadowski, Free vibrations and static analysis of functionally graded sandwich plates with three-dimensional finite elements, Meccanica, vol. 55, no. 4, pp. 815–832, 2020. DOI: 10.1007/s11012-019-01001-7.
  • S.-H. Chi and Y.-L. Chung, Mechanical behavior of functionally graded material plates under transverse load - part i: Analysis, Int. J. Solids Struct., vol. 43, no. 13, pp. 3657–3674, 2006. DOI: 10.1016/j.ijsolstr.2005.04.011.
  • Z. Cheng and R. Batra, Deflection relationships between the homogeneous Kirchhoff plate theory and different functionally graded plate theories, Arch. Mech., vol. 52, no. 1, pp. 143–158, 2000.
  • J. Reddy, Analysis of functionally graded plates, Int. J. Numer. Methods Eng., vol. 47, no. 1–3, pp. 663–684, 2000. DOI: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
  • A. Ferreira, R. Batra, C. Roque, L. Qian, and P. Martins, Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method, Compos. Struct., vol. 69, no. 4, pp. 449–457, 2005. DOI: 10.1016/j.compstruct.2004.08.003.
  • R. Kumar, A. Lal, B. Singh, and J. Singh, New transverse shear deformation theory for bending analysis of FGM plate under patch load, Compos. Struct., vol. 208, pp. 91–100, 2019. DOI: 10.1016/j.compstruct.2018.10.014.
  • V.-H. Nguyen, T.-K. Nguyen, H.-T. Thai, and T. Vo, A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates, Compos. B Eng., vol. 66, pp. 233–246, 2014. DOI: 10.1016/j.compositesb.2014.05.012.
  • H. Nguyen-Xuan, L. V. Tran, C. H. Thai, S. Kulasegaram, and S. Bordas, Isogeometric analysis of functionally graded plates using a refined plate theory, Compos. B Eng., vol. 64, pp. 222–234, 2014. DOI: 10.1016/j.compositesb.2014.04.001.
  • M. Li, C. G. Soares, and R. Yan, A novel shear deformation theory for static analysis of functionally graded plates, Compos. Struct., vol. 250, pp. 112559, 2020. DOI: 10.1016/j.compstruct.2020.112559.
  • E. Carrera, S. Brischetto, M. Cinefra, and M. Soave, Effects of thickness stretching in functionally graded plates and shells, Compos. B Eng., vol. 42, no. 2, pp. 123–133, 2011.
  • L. Qian, R. Batra, and L. Chen, Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkin method, Compos. B Eng., vol. 35, no. 6–8, pp. 685–697, 2004. DOI: 10.1016/j.compositesb.2004.02.004.
  • S. Natarajan and M. Ganapathi, Bending and vibration of functionally graded material sandwich plates using an accurate theory, Finite Elem. Anal. Des., vol. 57, pp. 32–42, 2012. DOI: 10.1016/j.finel.2012.03.006.
  • H.-T. Thai and D.-H. Choi, Improved refined plate theory accounting for effect of thickness stretching in functionally graded plates, Compos. B Eng., vol. 56, pp. 705–716, 2014. DOI: 10.1016/j.compositesb.2013.09.008.
  • A. Zenkour, Generalized shear deformation theory for bending analysis of functionally graded plates, Appl. Math. Model., vol. 30, no. 1, pp. 67–84, 2006. DOI: 10.1016/j.apm.2005.03.009.
  • A. Neves, et al., A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates, Compos. B Eng., vol. 43, no. 2, pp. 711–725, 2012. DOI: 10.1016/j.compositesb.2011.08.009.
  • J. Mantari and C. G. Soares, Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates, Compos. Struct., vol. 94, no. 8, pp. 2561–2575, 2012. DOI: 10.1016/j.compstruct.2012.02.019.
  • J. Mantari and C. G. Soares, Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells, Compos. B Eng., vol. 56, pp. 126–136, 2014. DOI: 10.1016/j.compositesb.2013.07.027.
  • H.-T. Thai and S.-E. Kim, A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates, Compos. Struct., vol. 99, pp. 172–180, 2013. DOI: 10.1016/j.compstruct.2012.11.030.
  • J. Mantari and C. G. Soares, Five-unknowns generalized hybrid-type quasi-3D HSDT for advanced composite plates, Appl. Math. Model., vol. 39, no. 18, pp. 5598–5615, 2015. DOI: 10.1016/j.apm.2015.01.020.
  • Z. Belabed, M. Houari, A. Tounsi, S. Mahmoud, and O. Bég, An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates, Compos. B Eng., vol. 60, pp. 274–283, 2014. DOI: 10.1016/j.compositesb.2013.12.057.
  • J. Mantari and C. G. Soares, Four-unknown quasi-3D shear deformation theory for advanced composite plates, Compos. Struct., vol. 109, pp. 231–239, 2014. DOI: 10.1016/j.compstruct.2013.10.047.
  • E. Carrera, S. Brischetto, and A. Robaldo, Variable kinematic model for the analysis of functionally graded material plates, AIAA J., vol. 46, no. 1, pp. 194–203, 2008. DOI: 10.2514/1.32490.
  • S. Brischetto and E. Carrera, Advanced mixed theories for bending analysis of functionally graded plates, Comput. Struct., vol. 88, no. 23-24, pp. 1474–1483, 2010. DOI: 10.1016/j.compstruc.2008.04.004.
  • F. Ramirez, P. Heyliger, and E. Pan, Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach, Compos. B Eng., vol. 37, no. 1, pp. 10–20, 2006. DOI: 10.1016/j.compositesb.2005.05.009.
  • D. Jha, T. Kant, and R. Singh, A critical review of recent research on functionally graded plates, Compos. Struct., vol. 96, pp. 833–849, 2013. DOI: 10.1016/j.compstruct.2012.09.001.
  • K. Swaminathan, D. Naveenkumar, A. Zenkour, and E. Carrera, Stress, vibration and buckling analyses of FGM plates - a state-of-the-art review, Compos. Struct., vol. 120, pp. 10–31, 2015. DOI: 10.1016/j.compstruct.2014.09.070.
  • H.-T. Thai and S.-E. Kim, A review of theories for the modeling and analysis of functionally graded plates and shells, Compos. Struct., vol. 128, pp. 70–86, 2015. DOI: 10.1016/j.compstruct.2015.03.010.
  • P. S. Ghatage, V. R. Kar, and P. E. Sudhagar, On the numerical modelling and analysis of multi-directional functionally graded composite structures: A review, Compos. Struct., vol. 236, pp. 111837, 2020. DOI: 10.1016/j.compstruct.2019.111837.
  • M. Aghdam, K. Bigdeli, and N. Shahmansouri, A semi-analytical solution for bending of moderately thick doubly curved functionally graded panels, Mech. Adv. Mater. Struct., vol. 17, no. 5, pp. 320–327, 2010. DOI: 10.1080/15376494.2010.488519.
  • M. Savoia and J. Reddy, A variational approach to three-dimensional elasticity solutions of laminated composite plates, J. Appl. Mech. ASME, vol. 59, pp. 166–175, 1992.
  • B. Bognet, F. Bordeu, F. Chinesta, A. Leygue, and A. Poitou, Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity, Comput. Methods Appl. Mech. Eng., vol. 201-204, pp. 1–12, 2012. DOI: 10.1016/j.cma.2011.08.025.
  • P. Vidal, L. Gallimard, and O. Polit, Composite beam finite element based on the proper generalized decomposition, Comput. Struct., vol. 102-103, pp. 76–86, 2012. DOI: 10.1016/j.compstruc.2012.03.008.
  • P. Vidal, L. Gallimard, and O. Polit, Proper generalized decomposition and layer-wise approach for the modeling of composite plate structures, Int. J. Solids Struct., vol. 50, no. 14-15, pp. 2239–2250, 2013. DOI: 10.1016/j.ijsolstr.2013.03.034.
  • C.-P. Wu and H.-Y. Li, An RMVT-based third-order shear deformation theory of multilayered functionally graded material plates, Compos. Struct., vol. 92, no. 10, pp. 2591–2605, 2010. DOI: 10.1016/j.compstruct.2010.01.022.
  • J. Mantari, A. Oktem, and C. G. Soares, A new trigonometric layerwise shear deformation theory for the finite element analysis of laminated composite and sandwich plates, Comput. Struct., vol. 94-95, pp. 45–53, 2012. DOI: 10.1016/j.compstruc.2011.12.003.
  • C.-P. Wu, S.-J. Chen, and K.-H. Chiu, Three-dimensional static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method, Mech. Res. Commun., vol. 37, no. 1, pp. 54–60, 2010. DOI: 10.1016/j.mechrescom.2009.10.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.