328
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Fracture of 28 buckled two-dimensional hexagonal sheets

, &
Pages 4993-5005 | Received 15 Feb 2021, Accepted 15 Jun 2021, Published online: 30 Jun 2021

References

  • K. Takeda and K. Shiraishi, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B: Condens. Matter., vol. 50, no. 20, pp. 14916–14922, 1994. DOI: 10.1103/physrevb.50.14916.
  • H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, and S. Ciraci, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations, Phys. Rev. B, vol. 80, no. 15, pp. 155453, 2009. DOI: 10.1103/PhysRevB.80.155453.
  • D. Singh, S.K. Gupta, I. Lukačević, and Y. Sonvane, Indiene 2D monolayer: a new nanoelectronic material, RSC Adv., vol. 6, no. 10, pp. 8006–8014, 2016. DOI: 10.1039/C5RA25773E.
  • Z. Zhu and D. Tománek, Semiconducting layered blue phosphorus: a computational study, Phys. Rev. Lett., vol. 112, no. 17, pp. 176802 2014. DOI: 10.1103/PhysRevLett.112.176802.
  • S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng , Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions, Angew. Chem. Int. Ed. Engl., vol. 54, no. 10, pp. 3112–3115, 2015. DOI: 10.1002/anie.201411246.
  • C. Kamal and M. Ezawa, Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems, Phys. Rev. B., vol. 91, no. 8, pp. 085423, 2015. DOI: 10.1103/PhysRevB.91.085423.
  • G. Wang, R. Pandey, and S.P. Karna, Atomically thin group V elemental films: theoretical investigations of antimonene allotropes, ACS Appl. Mater. Interfaces., vol. 7, no. 21, pp. 11490–11496, 2015. DOI: 10.1021/acsami.5b02441.
  • S. Zhang, et al. , Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities, Angew. Chem. Int. Ed. Engl., vol. 55, no. 5, pp. 1666–1669, 2016. DOI: 10.1002/anie.201507568.
  • C. Kamal, A. Chakrabarti, and M. Ezawa, Direct band gaps in group IV-VI monolayer materials: Binary counterparts of phosphorene, Phys. Rev. B., vol. 93, no. 12, pp. 125428, 2016. DOI: 10.1103/PhysRevB.93.125428.
  • B. Aufray, et al., Graphene-like silicon nanoribbons on Ag (110): A possible formation of silicene, Appl. Phys. Lett., vol. 96, no. 18, pp. 183102, 2010. DOI: 10.1063/1.3419932.
  • P.D. Padova, et al., Evidence of graphene-like electronic signature in silicene nanoribbons, Appl. Phys. Lett., vol. 96, Article No. 261905, 2010. DOI: 10.1063/1.3459143
  • P. Padova, et al., Multilayer Silicene Nanoribbons, Nano Lett., vol. 12, no. 11, pp. 5500–5503, 2012. DOI: 10.1021/nl302598x.
  • B. Feng, et al., Evidence of Silicene in Honeycomb Structures of Silicon on Ag(111), Nano Lett., vol. 12, no. 7, pp. 3507–3511, 2012. − DOI: 10.1021/nl301047g.
  • L. Meng, et al., Buckled Silicene Formation on Ir(111), Nano Lett., vol. 13, no. 2, pp. 685–690, 2013. DOI: 10.1021/nl304347w.
  • A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Yamada-Takamura, Experimental Evidence for Epitaxial Silicene on Diboride Thin Films, Phys. Rev. Lett., vol. 108, no. 24, pp. 245501, 2012. DOI: 10.1103/PhysRevLett.108.245501.
  • J.L. Zhang, et al., Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus, Nano Lett., vol. 16, no. 8, pp. 4903–4908, 2016. DOI: 10.1021/acs.nanolett.6b01459.
  • W. Zhang, et al., Epitaxial synthesis of blue phosphorene, Small, vol. 14, no. 51, pp. 1804066, 2018. DOI: 10.1002/smll.201804066.
  • P. Vishnoi, M. Mazumder, S.K. Pati, and C.R. Rao, Arsenene nanosheets and nanodots, New J. Chem., vol. 42, no. 17, pp. 14091–14095, 2018. DOI: 10.1039/C8NJ03186J.
  • X. Wu, et al., Epitaxial Growth and Air‐Stability of Monolayer Antimonene on PdTe2, Adv. Mater., vol. 29, no. 11, pp. 1605407, 2017. DOI: 10.1002/adma.201605407.
  • M. Fortin-Deschênes, et al., Synthesis of antimonene on germanium, Nano Lett., vol. 17, no. 8, pp. 4970–4975, 2017. DOI: 10.1021/acs.nanolett.7b02111.
  • Y. Shao, et al., Epitaxial growth of flat antimonene monolayer: A new honeycomb analogue of graphene, Nano Lett., vol. 18, no. 3, pp. 2133–2139, 2018. DOI: 10.1021/acs.nanolett.8b00429.
  • Y.-H. Mao, et al., Epitaxial growth of highly strained antimonene on Ag (111), Front. Phys., vol. 13, no. 3, pp. 138106, 2018. DOI: 10.1007/s11467-018-0757-3.
  • Q.-Q. Yang, et al., 2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers, Nanoscale, vol. 10, no. 45, pp. 21106–21115, 2018. DOI: 10.1039/c8nr06797j.
  • J.-A. Yan, S.-P. Gao, R. Stein, and G. Coard, Tuning the electronic structure of silicene and germanene by biaxial strain and electric field, Phys. Rev. B., vol. 91, no. 24, pp. 245403, 2015. DOI: 10.1103/PhysRevB.91.245403.
  • A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.-C. Zhang, and D. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater., vol. 16, no. 2, pp. 163–169, 2017. DOI: 10.1038/nmat4802.
  • Z. Ni, et al., Tunable bandgap in silicene and germanene, Nano Lett., vol. 12, no. 1, pp. 113–118, 2012. DOI: 10.1021/nl203065e.
  • P. Vishnoi, K. Pramoda, and C. Rao, 2D Elemental Nanomaterials Beyond Graphene, ChemNanoMat., vol. 5, no. 9, pp. 1062–1091, 2019. DOI: 10.1002/cnma.201900176.
  • D. Geng, and H.Y. Yang, Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides, Adv. Mater., vol. 30, no. 45, pp. 1800865, 2018. DOI: 10.1002/adma.201800865.
  • F. Wang, et al., 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection, Chem. Soc. Rev., vol. 47, no. 16, pp. 6296–6341, 2018. DOI: 10.1039/c8cs00255j.
  • B. Liu and K. Zhou, Recent progress on graphene-analogous 2D nanomaterials: Properties, modeling and applications, Prog. Mater. Sci., vol. 100, pp. 99–169, 2019. DOI: 10.1016/j.pmatsci.2018.09.004.
  • H. Zhao, Strain and chirality effects on the mechanical and electronic properties of silicene and silicane under uniaxial tension, Phys. Lett. A., vol. 376, no. 46, pp. 3546–3550, 2012. DOI: 10.1016/j.physleta.2012.10.024.
  • B. Mortazavi, O. Rahaman, M. Makaremi, A. Dianat, G. Cuniberti, and T. Rabczuk, First-principles investigation of mechanical properties of silicene, germanene and stanene, Physica E., vol. 87, pp. 228–232, 2017. DOI: 10.1016/j.physe.2016.10.047.
  • G. Liu, Z. Gao, and J. Zhou, Strain effects on the mechanical properties of Group-V monolayers with buckled honeycomb structures, Physica E., vol. 112, pp. 59–65, 2019. DOI: 10.1016/j.physe.2019.04.002.
  • J.-W. Jiang, and Y.-P. Zhou, Handbook of Stillinger-Weber Potential Parameters for Two-Dimensional Atomic Crystals., InTech, UK, 2017. DOI: 10.5772/intechopen.71929
  • M.-Q. Le and D.-T. Nguyen, The role of defects in the tensile properties of silicene, Appl. Phys. A., vol. 118, no. 4, pp. 1437–1445, 2015. DOI: 10.1007/s00339-014-8904-3.
  • B. Yang, M. Li, J. Wang, J. Zhang, D. Liao, and Y. Yue, Critical Fracture Properties in Puckered and Buckled Arsenene by Molecular Dynamics Simulation, Phys. Chem. Chem. Phys., vol. 21, no. 23, pp. 12372–12379, 2019. DOI: 10.1039/C9CP01605H.
  • H.-T. Nguyen, M.-Q. Le, and V.-T. Nguyen, Mode-I stress intensity factors of silicene, AlN, and SiC hexagonal sheets, Mater. Res. Express, vol. 5, no. 6, pp. 065025, 2018. DOI: 10.1088/2053-1591/aac807.
  • B. Liu, Y. Huang, H. Jiang, S. Qu, and K.C. Hwang, The atomic-scale finite element method, Comput Methods Appl Mech Eng., vol. 193, no. 17-20, pp. 1849–1864, 2004. DOI: 10.1016/j.cma.2003.12.037.
  • Y. Wang, C. Zhang, E. Zhou, C. Sun, J. Hinkley, T.S. Gates, and J. Su, Atomistic finite elements applicable to solid polymers, Comput. Mater. Sci., vol. 36, no. 3, pp. 292–302, 2006. DOI: 10.1016/j.commatsci.2005.03.016.
  • J. Wackerfuß, Molecular mechanics in the context of the finite element method, Int. J. Numer. Methods Eng., vol. 77, no. 7, pp. 969–997, 2009. DOI: 10.1002/nme.2442.
  • L. Nasdala, A. Kempe, and R. Rolfes, The molecular dynamic finite element method, CMC, vol. 19, no. 1, pp. 57–104, 2010.
  • M.-Q. Le and D.-T. Nguyen, Atomistic simulations of pristine and defective hexagonal BN and SiC sheets under uniaxial tension, Mater. Sci. Eng. A, vol. 615, pp. 481–488, 2014. DOI: 10.1016/j.msea.2014.07.109.
  • D.-T. Nguyen, M.-Q. Le, V.-T. Nguyen, and T.-L. Bui, Effects of various defects on the mechanical properties of black phosphorene, Superlattices Microstruct., vol. 112, pp. 186–199, 2017. DOI: 10.1016/j.spmi.2017.09.021.
  • M. Mantina, A.C. Chamberlin, R. Valero, C.J. Cramer, and D.G. Truhlar, Consistent van der Waals radii for the whole main group, J. Phys. Chem. A, vol. 113, no. 19, pp. 5806–5812, 2009. DOI: 10.1021/jp8111556.
  • X.-J. Ge, K.-L. Yao, and J.-T. Lü, Comparative study of phonon spectrum and thermal expansion of graphene, silicene, germanene, and blue phosphorene, Phys. Rev. B, vol. 94, no. 16, pp. 165433, 2016. DOI: 10.1103/PhysRevB.94.165433.
  • Y. Xu, B. Peng, H. Zhang, H. Shao, R. Zhang, and H. Zhu, First‐principle calculations of optical properties of monolayer arsenene and antimonene allotropes, Annalen Der Physik., vol. 529, no. 4, pp. 1600152, 2017. DOI: 10.1002/andp.201600152.
  • Y. Chen, Q. Sun, and P. Jena, SiTe monolayers: Si-based analogues of phosphorene, J. Mater. Chem. C., vol. 4, no. 26, pp. 6353–6361, 2016. DOI: 10.1039/C6TC01138A.
  • M.-Q. Le and Y. Umeno, Fracture of monolayer boronitrene and its interface with graphene, Int. J. Fract., vol. 205, no. 2, pp. 151–168, 2017. DOI: 10.1007/s10704-017-0188-0.
  • M.-Q. Le and R.C. Batra, Mode-I stress intensity factor in single layer graphene sheets, Comput. Mater. Sci., vol. 118, pp. 251–258, 2016. DOI: 10.1016/j.commatsci.2016.03.027.
  • M.-Q. Le, Reactive molecular dynamics simulations of the mechanical properties of various phosphorene allotropes, Nanotechnology, vol. 29, no. 19, pp. 195701 2018. DOI: 10.1088/1361-6528/aaaacf.
  • M.-Q. Le, Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, InN and SiC sheets, J. Comput. Theor. Nano Sci., vol. 11, no. 6, pp. 1458–1464, 2014. DOI: 10.1166/jctn.2014.3518.
  • O. Akbari, R. Ansari, and S. Rouhi, Mechanical properties of pristine and Fe, V and Ti doped arsenene: density functional theory calculation, Mater. Res. Express, vol. 5, no. 1, pp. 015025, 2018. DOI: 10.1088/2053-1591/aaa217.
  • M. Jafari, R. Ansari, and S. Rouhi, Evaluation of the elastic and plastic properties of the antimonene at the presence of the external electric field: a DFT investigation. Applied Physics A, vol. 126, no. 2, pp. 1–21, 2020. DOI: 10.1007/s00339-019-3273-6
  • M. Jafari, R. Ansari, and S. Rouhi, First-principle investigation of the elastic and plastic properties of the bismuthene: Effect of the external electric field, Superlattices Microstruct., vol. 140, pp. 106476, 2020. DOI: 10.1016/j.spmi.2020.106476.
  • R. Khare, et al., Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets, Phys. Rev. B., vol. 75, no. 7, pp. 075412, 2007. DOI: 10.1103/PhysRevB.75.075412.
  • S.S. Terdalkar, S. Huang, H. Yuan, J.J. Rencis, T. Zhu, and S. Zhang, Nanoscale fracture in graphene, Chem. Phys. Lett., vol. 494, no. 4–6, pp. 218–222, 2010. DOI: 10.1016/j.cplett.2010.05.090.
  • M. Xu, A. Tabarraei, J.T. Paci, J. Oswald, and T. Belytschko, A coupled quantum/continuum mechanics study of graphene fracture, Int. J. Fract., vol. 173, no. 2, pp. 163–173, 2012. DOI: 10.1007/s10704-011-9675-x.
  • B. Zhang, L. Mei, and H. Xiao, Nanofracture in graphene under complex mechanical stresses, Appl. Phys. Lett., vol. 101, no. 12, pp. 121915, 2012. DOI: 10.1063/1.4754115.
  • A. Tabarraei and X. Wang, A molecular dynamics study of nanofracture in monolayer boron nitride, Mater. Sci. Eng. A, vol. 641, pp. 225–230, 2015. DOI: 10.1016/j.msea.2015.06.012.
  • X. Wang, A. Tabarraei, and D.E. Spearot, Fracture mechanics of monolayer molybdenum disulfide, Nanotechnology, vol. 26, no. 17, pp. 175703 2015. DOI: 10.1088/0957-4484/26/17/175703.
  • T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, Third ed. CRC Press, Taylor & Francis Group, Boca Raton, FL, 2005.
  • P. Hess, Thickness of elemental and binary single atomic monolayers, Nanoscale Horiz., vol. 5, no. 3, pp. 385–399, 2020. DOI: 10.1039/c9nh00658c.
  • A. Masolin, P.-O. Bouchard, R. Martini, and M. Bernacki, Thermo-mechanical and fracture properties in single-crystal silicon, J. Mater. Sci., vol. 48, no. 3, pp. 979–988, 2013. DOI: 10.1007/s10853-012-6713-7.
  • F. Ericson, S. Johansson, and J.-Å. Schweitz, Hardness and fracture toughness of semiconducting materials studied by indentation and erosion techniques, Mater. Sci. Eng. A, vol. 105-106, pp. 131–141, 1988. DOI: 10.1016/0025-5416(88)90489-2.
  • G. Michot, A. George, A. Chabli-Brenac, and E. Molva, Fracture toughness of pure and in-doped GaAs, Scr. Metall., vol. 22, no. 7, pp. 1043–1104, 1988. DOI: 10.1016/S0036-9748(88)80100-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.