86
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Nonlinear analysis of folded-plate structures by harmonic coupled finite strip method and rheological-dynamical analogy

&
Pages 5191-5206 | Received 31 Mar 2021, Accepted 28 Jun 2021, Published online: 20 Jul 2021

References

  • Y.K. Cheung, Finite Strip Method in Structural Analysis, Oxford, Pergamon Press, 1976. [3] Y.K. Cheung and L.G. Tham, Finite Strip Method, CRC Press LLC, Boca Raton, Florida, 1998.
  • Y.C. Loo and A.R. Cusens, The Finite-Strip Method in Bridge Engineering, Alden Press, Oxford London and Northampton, 1978.
  • Y.K. Cheung and L.G. Tham, Finite Strip Method, CRC Press LLC, 1998.
  • D.D. Milašinović, The Finite Strip Method in Computational Mechanics, Faculties of Civil Engineering: University of Novi Sad, Technical University of Budapest and University of Belgrade, Subotica, Budapest, Belgrade, 1997.
  • E. Reissner, Analysis of shear lag in box beams by the principle minimum potential energy, Quart. Appl. Math., vol. 4, no. 3, pp. 268–278, 1946. DOI: 10.1090/qam/17176.
  • H.R. Evans and V. Křístek, A hand calculation of the shear lag effect in stiffened flange plates, J Construct Steel Res., vol. 4, no. 2, pp. 117–134, 1984. DOI: 10.1016/0143-974X(84)90022-1.
  • H. Gaur and G.R. Goliya, Mitigating shear lag in tall buildings, Int. J. Adv. Struct. Eng., vol. 7, no. 3, pp. 269–279, 2015. DOI: 10.1007/s40091-015-0098-1.
  • F. Gara, G. Leoni, and L. Dezi, A beam finite element including shear lag effect for the time-dependent analysis of steel-concrete composite decks, Eng. Struct., vol. 31, no. 8, pp. 1888–1902, 2009. DOI: 10.1016/j.engstruct.2009.03.017.
  • S. Alimirzaei, M. Mohammadimehr, and A. Tounsi, Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGF electro-magneto-elastic bending, buckling and vibration solutions, Struct. Eng. Mech., vol. 71, no. 5, pp. 485–502, 2019.
  • W. Li and H. Ma, A nonlinear cross-section deformable thin-walled beam finite element model with high-order interpolation of warping displacement, Thin-Walled Struct., vol. 152, pp. 106748, 2020. DOI: 10.1016/j.tws.2020.106748.
  • D.J. Dawe, Use of the finite strip method in predicting the behaviour of composite laminated structures, Compos. Struct., vol. 57, no. 1–4, pp. 11–36, 2002. DOI: 10.1016/S0263-8223(02)00059-4.
  • M. Sekulović and D. Milašinović, Non-linear analysis of plate and folded plate structures by the finite strip method, Eng. Comput., vol. 4, no. 1, pp. 41–47, 1987. DOI: 10.1108/eb023682.
  • D.D. Milašinović, Geometric non-linear analysis of thin plate structures using the harmonic coupled finite strip method, Thin-Walled Struct., vol. 49, no. 2, pp. 280–290, 2011. DOI: 10.1016/j.tws.2010.11.005.
  • D.D. Milašinović, P. Marić, Ž. Živanov, and M. Hajduković, Inelastic buckling mode interactions and resonance instabilities in thin-walled columns due to the fatigue damage, Eng. Comput., vol. 37, no. 8, pp. 2819–2845, 2020. DOI: 10.1108/EC-07-2019-0318.
  • D.D. Milašinović, Rheological-dynamical analogy for analysis of low cycle fatigue in seismically isolated regular bridges, Eng. Struct., vol. 191, pp. 493–508, 2019. DOI: 10.1016/j.engstruct.2019.04.075.
  • D.D. Milašinović, Harmonic coupled finite strip method applied on buckling-mode interaction analysis of composite thin-walled wide-flange columns, Thin-Walled Struct., vol. 50, no. 1, pp. 95–105, 2012. DOI: 10.1016/j.tws.2011.08.011.
  • Z. Li, J. Abreu, J. Leng, S. Adany, and B. Schafer, Review: Constrained finite strip method developments and applications in cold-formed steel design, Thin-Walled Struct., vol. 81, pp. 2–18, 2014. DOI: 10.1016/j.tws.2013.09.004.
  • P. Ma, B. He, Y. Fang, Y. Jiao, and H. Qi, An efficient finite strip procedure for initial post-buckling analysis of thin-walled members, Arch. Appl. Mech., vol. 90, no. 3, pp. 585–601, 2020. DOI: 10.1007/s00419-019-01627-9.
  • A. Borković, S. Kovačević, D. Milašinović, G. Radenković, O. Mijatović, and V. Golubović-Bugarski, Geometric nonlinear analysis of prismatic shells using the semi-analytical finite strip method, Thin-Walled Struct., vol. 117, pp. 63–88, 2017. DOI: 10.1016/j.tws.2017.03.033.
  • A. Borković, G. Radenković, D. Majstorović, S. Milovanović, D. Milašinović, and R. Cvijić, Free vibration analysis of singly curved shells using the isogeometric finite strip method, Thin-Walled Struct., vol. 157, pp. 107125, 2020. DOI: 10.1016/j.tws.2020.107125.
  • M.A. Shahmohammadi, M. Azhari, M.M. Saadatpour, and S. Sarrami-Foroushani, Geometrically nonlinear analysis of sandwich FGM and laminated composite degenerated shells using the isogeometric finite strip method, Comput. Methods Appl. Mech. Eng., vol. 371, pp. 113311, 2020. DOI: 10.1016/j.cma.2020.113311.
  • H. Hirane, M.O. Belarbi, M.S.A. Houari, and A. Tounsi, On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates, Engineering with Computers, 2021. DOI: 10.1007/s00366-020-01250-1.
  • M.S.H. Al-Furjan, M. Habibi, A. Ghabussi, H. Safarpour, M. Safarpour, and A. Tounsi, Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory, Eng. Struct., vol. 228, pp. 111496, 2021. DOI: 10.1016/j.engstruct.2020.111496.
  • D.D. Milašinović, Rheological-dynamical theory of visco-elasto-plasicity and fatigue: Part 2, Multidiscip. Model. Mater. Struct., vol. 2, no. 2, pp. 127–166, 2006.
  • D.D. Milašinović, D. Majstorović, and R. Vukomanović, Quasi static and dynamic inelastic buckling and failure of folded-plate structures by a full-energy finite strip method, Adv. Eng. Softw., vol. 117, pp. 136–152, 2018. DOI: 10.1016/j.advengsoft.2017.07.013.
  • D.D. Milašinović, Rheological-dynamical analogy: Modeling of fatigue behavior, Int. J. Solids Struct., vol. 40, no. 1, pp. 181–217, 2003. DOI: 10.1016/S0020-7683(02)00518-8.
  • Bažant Z.P.: Mathematical models for creep and shrinkage of concrete, Chapter 7 in Creep and Shrinkage in Concrete Structures, ed. Z. P. Bažant and F. H.Wittmann, John Wiley & Sons, London, (1982), pp. 163–256
  • J. Chen, B. Young, and B. Uy, Behavior of high strength structural steel at elevated temperatures, J. Struct. Eng., vol. 132, no. 12, pp. 1948–1954, 2006. DOI: 10.1061/(ASCE)0733-9445(2006)132:12(1948).
  • M.S.H. Al-Furjan, M. Habibi, J. Ni, D.W. Jung, and A. Tounsi, Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems, Engineering with Computers, 2020. DOI: 10.1007/s00366-020-01200-x.
  • D.D. Milašinović, Rheological-dynamical method for prediction of compressive strength and deformation of rocks, Int. J. Rock Mech. Min. Sci., vol. 141, pp. 104659, 2021. DOI: 10.1016/j.ijrmms.2021.104659.
  • S. Murakami, Continuum Damage Mechanics, Springer, Dordrecht Heidelberg London NY, 2012.
  • D.D. Milašinović, Rheological-dynamical continuum damage model for concrete under uniaxial compression and its experimental verification, Theor. Appl. Mech., vol. 42, no. 2, pp. 73–110, 2015.
  • N.W. Tschoegl, G.W. Knauss, and I. Emri, Poisson’s ratio in linear viscoelaticity - A critical review, Mech Time-Dependent Mater., vol. 6, no. 1, pp. 3–51, 2002. DOI: 10.1023/A:1014411503170.
  • P.S. Rakić, D.D. Milašinović, Ž. Živanov, Z. Suvajdžin, M. Nikolić, and M. Hajduković, MPI-CUDA parallelisation of a finite-strip program for geometric nonlinear analysis: A hybrid approach, Adv. Eng. Softw., vol. 42, no. 5, pp. 273–285, 2011. DOI: 10.1016/j.advengsoft.2010.10.008.
  • D.D. Milašinović, A. Borković, Ž. Živanov, P.S. Rakić, M. Nikolić, L. Stričević, and M. Hajduković Large displacement stability analysis of thin plate structures: Scope of MPI/OpenMP parallelization in harmonic coupled finite strip analysis, Adv. Eng. Softw., vol. 66, pp. 40–51, 2013. DOI: 10.1016/j.advengsoft.2012.11.002.
  • D.D. Milašinović and D. Goleš, Geometric nonlinear analysis of reinforced concrete folded plate structures by the harmonic coupled finite strip method, Period. Polytech. Civil Eng., vol. 58, no. 3, pp. 173–185, 2014. DOI: 10.3311/PPci.2096.
  • D.D. Milašinović, Ž. Živanov, P. Rakić, Z. Suvajdžin, M. Nikolić, M. Hajduković, A. Borković and I. Milaković, A finite-strip analysis of nonlinear shear-lag effect supported by automatic visualization, Published in the Seventh International Conference Proceedings on Engineering Computational Technology, B.H.V. Topping, J.M. Adam, F.J. Pallares, R. Bru and M.L. Romero (Eds.), Civil-Comp Press, Stirlingshire, Scotland, Paper 80, 2010.
  • K.R. Moffatt and P.J. Dowling, Parametric study on the shear lag phenomenon in steel box girder bridges, Report CESLIC BG17, Imperial College, London, 1972.
  • H.J.F. Diógenes, L.C. Cossolino, A.H.A. Pereira, M.K. El Debs, and A.L.H.C. El Debs, Determination of modulus of elasticity of concrete from the acoustic response, Ibracon Struct. Mater. J., vol. 4, no. 5, pp. 792–813, 2011.
  • L. Dezi, F. Gara, and G. Leoni, Effective slab width in prestressed twin-girder composite decks, J. Struct. Eng., vol. 132, no. 9, pp. 1358–1370, 2006. DOI: 10.1061/(ASCE)0733-9445(2006)132:9(1358).
  • J. Lemaitre, How to use damage mechanics, Nucl. Eng. Des., vol. 80, no. 2, pp. 233–245, 1984. DOI: 10.1016/0029-5493(84)90169-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.