184
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The effect of carbon nanofibers on transverse cracking in carbon fiber reinforced polymer: A 3D finite element modeling and simulation

ORCID Icon & ORCID Icon
Pages 5255-5266 | Received 29 Jul 2020, Accepted 03 Jul 2021, Published online: 23 Jul 2021

References

  • M.H. Al-Saleh and U. Sundararaj, Review of the mechanical properties of carbon nanofiber/polymer composites, Compos. Part A: Appl. Sci. Manuf., vol. 42, no. 12, pp. 2126–2142, 2011. DOI: 10.1016/j.compositesa.2011.08.005.
  • J. Silvestre, N. Silvestre, and J. De Brito, Polymer nanocomposites for structural applications: Recent trends and new perspectives, Mech. Adv. Mater. Struct., vol. 23, no. 11, pp. 1263–1277, 2016. DOI: 10.1080/15376494.2015.1068406.
  • P. Wang, et al., Dynamic behavior of carbon nanofiber-modified epoxy with the effect of polydopamine-coated interface, Mech. Adv. Mater. Struct., vol. 27, no. 21, pp. 1827–1839, 2020. DOI: 10.1080/15376494.2018.1529843.
  • D.R. Paul and L.M. Robeson, Polymer nanotechnology: Nanocomposites, Polymer, vol. 49, no. 15, pp. 3187–3204, 2008. DOI: 10.1016/j.polymer.2008.04.017.
  • V. Mordkovich, Carbon nanofibers: A new ultrahigh-strength material for chemical technology, Theoret. Foundations Chem. Eng., vol. 37, no. 5, pp. 429–438, 2003. DOI: 10.1023/A:1026082323244.
  • N.T. Phong, M.H. Gabr, K. Okubo, B. Chuong, and T. Fujii, Improvement in the mechanical performances of carbon fiber/epoxy composite with addition of nano-(Polyvinyl alcohol) fibers, Compos. Struct., vol. 99, pp. 380–387, 2013. DOI: 10.1016/j.compstruct.2012.12.018.
  • F. Inam, D.W. Wong, M. Kuwata, and T. Peijs, Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers, J. Nanomater., vol. 2010, pp. 1–12, 2010. DOI: 10.1155/2010/453420.
  • B. Ashrafi, et al., Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes, Compos. Sci. Technol., vol. 71, no. 13, pp. 1569–1578, 2011. DOI: 10.1016/j.compscitech.2011.06.015.
  • J. Luo, Z. Duan, G. Xian, Q. Li, and T. Zhao, Damping performances of carbon nanotube reinforced cement composite, Mech. Adv. Mater. Struct., vol. 22, no. 3, pp. 224–232, 2015. DOI: 10.1080/15376494.2012.736052.
  • V. Varma and V. Rajamohan, Enhancement of low cycle vibration induced fatigue life of composite beam having central hole using CNT reinforcement: An experimental study, Mech. Adv. Mater. Struct., vol. 27, no. 24, pp. 2059–2067, 2020. DOI: 10.1080/15376494.2018.1541489.
  • J. Sandler, P. Werner, M.S. Shaffer, V. Demchuk, V. Altstädt, and A.H. Windle, Carbon-nanofibre-reinforced poly (ether ether ketone) composites, Compos. Part A: Appl. Sci. Manuf., vol. 33, no. 8, pp. 1033–1039, 2002. DOI: 10.1016/S1359-835X(02)00084-2.
  • X. Shui and D. Chung, Conducting polymer-matrix composites containing carbon filaments of submicron diameter, 38th Int. SAMPE Symp Exhib., Advanced Materials: Performance through Technology Insertion, vol. 38, pp. 1869–1875, 1993.
  • D.R. Bortz, C. Merino, and I. Martin-Gullon, Mechanical characterization of hierarchical carbon fiber/nanofiber composite laminates, Compos. Part A: Appl. Sci. Manuf., vol. 42, no. 11, pp. 1584–1591, 2011. DOI: 10.1016/j.compositesa.2011.07.002.
  • J. Muthu, P. Bradley, I.I. Jinasena, S. Durbach, A. Moya, and R. Paskaramoorthy, The effects of carbon nanofiber on the mechanical properties of glass/coir fiber reinforced polyester hybrid composites, Polym. Compos., vol. 39, no. 2, pp. 318–328, 2018. DOI: 10.1002/pc.23938.
  • G. Dai and L. Mishnaevsky, Jr. Carbon nanotube reinforced hybrid composites: Computational modeling of environmental fatigue and usability for wind blades, Compos. Part B: Eng., vol. 78, pp. 349–360, 2015. DOI: 10.1016/j.compositesb.2015.03.073.
  • G. Dai and L. Mishnaevsky, Jr. Fatigue of multiscale composites with secondary nanoplatelet reinforcement: 3D computational analysis, Compos. Sci. Technol., vol. 91, pp. 71–81, 2014. DOI: 10.1016/j.compscitech.2013.11.024.
  • S. Kundalwal and S. Kumar, Multiscale modeling of stress transfer in continuous microscale fiber reinforced composites with nano-engineered interphase, Mech. Mater., vol. 102, pp. 117–131, 2016. DOI: 10.1016/j.mechmat.2016.09.002.
  • S.S. Wicks, W. Wang, M.R. Williams, and B.L. Wardle, Multi-scale interlaminar fracture mechanisms in woven composite laminates reinforced with aligned carbon nanotubes, Compos. Sci. Technol., vol. 100, pp. 128–135, 2014. DOI: 10.1016/j.compscitech.2014.06.003.
  • T. Ogasawara, Y. Ishida, and T. Ishikawa, Properties of vapor grown carbon nano fiber/phenylethynyl terminated polyimide composite, Adv. Compos. Mater., vol. 13, no. 3-4, pp. 215–226, 2004. DOI: 10.1163/1568551042580208.
  • J. Zeng, B. Saltysiak, W. Johnson, D.A. Schiraldi, and S. Kumar, Processing and properties of poly (methyl methacrylate)/carbon nanofiber composites, Compos. Part B: Eng., vol. 35, no. 3, pp. 245–249, 2004. DOI: 10.1016/j.compositesb.2003.08.009.
  • E.E. Gdoutos, M.S. Konsta-Gdoutos, and P.A. Danoglidis, Portland cement mortar nanocomposites at low carbon nanotube and carbon nanofiber content: A fracture mechanics experimental study, Cem. Concr. Compos., vol. 70, pp. 110–118, 2016. DOI: 10.1016/j.cemconcomp.2016.03.010.
  • N.M. Barkoula, B. Alcock, N. Cabrera, and T. Peijs, Fatigue properties of highly oriented polypropylene tapes and all-polypropylene composites, Polym. Polym. Compos., vol. 16, no. 2, pp. 101–113, 2008. DOI: 10.1177/096739110801600203.
  • S.C. Joshi and V. Dikshit, Enhancing interlaminar fracture characteristics of woven CFRP prepreg composites through CNT dispersion, J. Compos. Mater., vol. 46, no. 6, pp. 665–675, 2012. DOI: 10.1177/0021998311410472.
  • M. Arca and D. Coker, Experimental investigation of CNT effect on curved beam strength and interlaminar fracture toughness of CFRP laminates, J. Phys.: Conf. Ser., vol. 524, pp. 012038, 2014. DOI: 10.1088/1742-6596/524/1/012038.
  • P. Subba Rao, K. Renji, M. Bhat, D.R. Mahapatra, and G. Narayana Naik, Mechanical properties of CNT–Bisphenol E cyanate ester-based CFRP nanocomposite developed through VARTM process, J. Reinf. Plast. Compos., vol. 34, no. 12, pp. 1000–1014, 2015. DOI: 10.1177/0731684415585382.
  • P. Karapappas, A. Vavouliotis, P. Tsotra, V. Kostopoulos, and A. Paipetis, Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes, J. Compos. Mater., vol. 43, no. 9, pp. 977–985, 2009. DOI: 10.1177/0021998308097735.
  • L. Böger, J. Sumfleth, H. Hedemann, and K. Schulte, Improvement of fatigue life by incorporation of nanoparticles in glass fibre reinforced epoxy, Compos. Part A: Appl. Sci. Manuf., vol. 41, no. 10, pp. 1419–1424, 2010. DOI: 10.1016/j.compositesa.2010.06.002.
  • V. Kostopoulos, et al., Mode I interlaminar fracture of CNF or/and PZT doped CFRPs via acoustic emission monitoring, Compos. Sci. Technol., vol. 67, no. 5, pp. 822–828, 2007. DOI: 10.1016/j.compscitech.2006.02.038.
  • P. Venkatanarayanan and A.J. Stanley, Intermediate velocity bullet impact response of laminated glass fiber reinforced hybrid (HEP) resin carbon nano composite, Aerosp. Sci. Technol., vol. 21, no. 1, pp. 75–83, 2012. DOI: 10.1016/j.ast.2011.05.007.
  • L. Ma, L. Wu, X. Cheng, D. Zhuo, Z. Weng, and R. Wang, Improving the interlaminar properties of polymer composites using a situ accumulation method to construct the multi-scale reinforcement of carbon nanofibers/carbon fibers, Compos. Part A: Appl. Sci. Manuf., vol. 72, pp. 65–74, 2015. DOI: 10.1016/j.compositesa.2015.01.023.
  • A. Sarim, B.M. Zhang, and C.C. Wang, Mechanical enhancement of carbon fiber/epoxy composites based on carbon nano fibers by using spraying methodology, AMM, vol. 245, pp. 203–208, 2012. DOI: 10.4028/www.scientific.net/AMM.245.203.
  • C. Viets, S. Kaysser, and K. Schulte, Damage mapping of GFRP via electrical resistance measurements using nanocomposite epoxy matrix systems, Compos. Part B: Eng., vol. 65, pp. 80–88, 2014. DOI: 10.1016/j.compositesb.2013.09.049.
  • V. Kostopoulos, A. Vavouliotis, P. Karapappas, P. Tsotra, and A. Paipetis, Damage monitoring of carbon fiber reinforced laminates using resistance measurements. Improving sensitivity using carbon nanotube doped epoxy matrix system, J. Intell. Mater. Syst. Struct., vol. 20, no. 9, pp. 1025–1034, 2009. DOI: 10.1177/1045389X08099993.
  • A. Jafarpour, M. Safarabadi, M. Haghighi-Yazdi, and A. Yousefi, Numerical study of curing thermal residual stresses in GF/CNF/epoxy nanocomposite using a random generator model, Mech. Adv. Mater. Struct., pp. 1–11, 2020. DOI: 10.1080/15376494.2020.1748254.
  • F. Zhu, C. Park, and G. Jin Yun, An extended Mori-Tanaka micromechanics model for wavy CNT nanocomposites with interface damage, Mech. Adv. Mater. Struct., vol. 28, no. 3, pp. 295–307, 2021. DOI: 10.1080/15376494.2018.1562135.
  • A. Pontefisso and L. Mishnaevsky, Jr, Nanomorphology of graphene and CNT reinforced polymer and its effect on damage: Micromechanical numerical study, Compos. Part B: Eng., vol. 96, pp. 338–349, 2016. DOI: 10.1016/j.compositesb.2016.04.006.
  • M. Hamedi, H. Golestanian, Y. Tadi Beni, and K. Alasvand Zarasvand, Evaluation of fracture energy for nanocomposites reinforced with carbon nanotubes using numerical and micromechanical methods, Mech. Adv. Mater. Struct., vol. 26, no. 11, pp. 984–992, 2019. DOI: 10.1080/15376494.2018.1432787.
  • D. Weidt and Ł. Figiel, Effect of CNT waviness and van der Waals interaction on the nonlinear compressive behaviour of epoxy/CNT nanocomposites, Compos. Sci. Technol., vol. 115, pp. 52–59, 2015. DOI: 10.1016/j.compscitech.2015.04.018.
  • M. Hasanzadeh, R. Ansari, and M. Hassanzadeh-Aghdam, Micromechanical elastoplastic analysis of randomly oriented nonstraight carbon nanotube-reinforced polymer nanocomposites, Mech. Adv. Mater. Struct., vol. 26, no. 20, pp. 1700–1710, 2019. DOI: 10.1080/15376494.2018.1444227.
  • S. Kundalwal and S. Meguid, Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites, Eur. J. Mech.-A/Solids, vol. 64, pp. 69–84, 2017. DOI: 10.1016/j.euromechsol.2017.01.014.
  • A. Alva, A. Bhagat, and S. Raja, Effective moduli evaluation of carbon nanotube reinforced polymers using micromechanics, Mech. Adv. Mater. Struct., vol. 22, no. 10, pp. 819–828, 2015. DOI: 10.1080/15376494.2013.864434.
  • V.S. Romanov, S.V. Lomov, I. Verpoest, and L. Gorbatikh, Can carbon nanotubes grown on fibers fundamentally change stress distribution in a composite?, Compos. Part A: Appl. Sci. Manuf., vol. 63, pp. 32–34, 2014. DOI: 10.1016/j.compositesa.2014.03.021.
  • V. Romanov, S.V. Lomov, I. Verpoest, and L. Gorbatikh, Inter-fiber stresses in composites with carbon nanotube grafted and coated fibers, Compos. Sci. Technol., vol. 114, pp. 79–86, 2015. DOI: 10.1016/j.compscitech.2015.04.013.
  • M. Ahmadi, R. Ansari, and S. Rouhi, Fracture behavior of the carbon nanotube/carbon fiber/polymer multiscale composites under bending test–A stochastic finite element method, Mech. Adv. Mater. Struct., vol. 26, no. 13, pp. 1169–1177, 2019. DOI: 10.1080/15376494.2018.1432790.
  • A. Melro, P. Camanho, F.A. Pires, and S. Pinho, Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part II–Micromechanical analyses, Int. J. Solids Struct., vol. 50, no. 11-12, pp. 1906–1915, 2013. DOI: 10.1016/j.ijsolstr.2013.02.007.
  • P.D. Soden, M.J. Hinton, and A. Kaddour, Lamina properties, lay-up configurations and loading conditions for a range of fibre reinforced composite laminates. In: Failure Criteria in Fibre-Reinforced-Polymer Composites, Elsevier, pp. 30–51, 2004.
  • B. Fiedler, M. Hojo, S. Ochiai, K. Schulte, and M. Ando, Failure behavior of an epoxy matrix under different kinds of static loading, Compos. Sci. Technol., vol. 61, no. 11, pp. 1615–1624, 2001. DOI: 10.1016/S0266-3538(01)00057-4.
  • F.J. Guild, K.D. Potter, J. Heinrich, R.D. Adams, and M. Winsom, Understanding and control of adhesive crack propagation in bonded joints between carbon fibre composite adherends II. Finite element analysis, Int. J. Adhes. Adhes., vol. 21, no. 6, pp. 445–453, 2001. DOI: 10.1016/S0143-7496(01)00021-5.
  • Z.S. Metaxa, M.S. Konsta-Gdoutos, and S.P. Shah, Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency, Cem. Concr. Compos., vol. 36, pp. 25–32, 2013. DOI: 10.1016/j.cemconcomp.2012.10.009.
  • A. Melro, P. Camanho, F.A. Pires, and S. Pinho, Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I–Constitutive modelling, Int. J. Solids Struct., vol. 50, no. 11-12, pp. 1897–1905, 2013. DOI: 10.1016/j.ijsolstr.2013.02.009.
  • V.M. Cunha, J.A. Barros, and J.M. Sena-Cruz, A finite element model with discrete embedded elements for fibre reinforced composites, Comput. Struct., vol. 94-95, pp. 22–33, 2012. DOI: 10.1016/j.compstruc.2011.12.005.
  • A. Puck and H. Schürmann, Failure analysis of FRP laminates by means of physically based phenomenological models. Composites Science and Technology, vol. 62, no. 12-13, pp. 1633–1662, 2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.