187
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Nonlinear dynamic analysis of a reciprocative magnetic coupling on performance of piezoelectric energy harvester interfaced with DC circuit

, , , &
Pages 5488-5500 | Received 12 Jan 2021, Accepted 13 Jul 2021, Published online: 02 Aug 2021

References

  • R. Mohamed, M.R. Sarker, and A. Mohamed, An optimization of rectangular shape piezoelectric energy harvesting cantilever beam for micro devices, JAE., vol. 50, no. 4, pp. 537–548, 2016. DOI: 10.3233/JAE-150129.
  • R. Patel, S. McWilliam, and A.A. Popov, A geometric parameter study of piezoelectric coverage on a rectangular cantilever energy harvester, Smart Mater. Struct., vol. 20, no. 8, pp. 085004, 2011. DOI: 10.1088/0964-1726/20/8/085004.
  • A. Erturk and D.J. Inman, Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling, J. Sound Vib., vol. 330, no. 10, pp. 2339–2353, 2011. DOI: 10.1016/j.jsv.2010.11.018.
  • M. Ferrari, et al., Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters, Sens. Actuators A-Phys., vol. 162, no. 2, pp. 425–431, 2010. DOI: 10.1016/j.sna.2010.05.022.
  • R.L. Harne and K.W. Wang, A review of the recent research on vibration energy harvesting via bistable systems, Smart Mater. Struct., vol. 22, no. 2, pp. 023001, 2013. DOI: 10.1088/0964-1726/22/2/023001.
  • M.F. Daqaq, et al., On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion, Appl. Mech. Rev., vol. 66, no. 4, 2014. DOI: 10.1115/1.4026278.
  • K. Vijayan, et al., Non-linear energy harvesting from coupled impacting beams, Int. J. Mech. Sci., vol. 96-97, pp. 101–109, 2015. DOI: 10.1016/j.ijmecsci.2015.03.001.
  • M. Rezaei, S.E. Khadem, and P. Firoozy, Broadband and tunable PZT energy harvesting utilizing local nonlinearity and tip mass effects, Int. J. Eng. Sci., vol. 118, pp. 1–15, 2017. DOI: 10.1016/j.ijengsci.2017.04.001.
  • S.C. Stanton, C.C. McGehee, and B.P. Mann, Reversible hysteresis for broadband magnetopiezoelastic energy harvesting, Appl. Phys. Lett., vol. 95, no. 17, pp. 174103, 2009. DOI: 10.1063/1.3253710.
  • C.C. Lan, et al., Equivalent impedance and power analysis of monostable piezoelectric energy harvesters, J. Intell. Mater. Syst. Struct., vol. 31, no. 14, pp. 1697–1715, 2020. DOI: 10.1177/1045389X20930080.
  • S.C. Stanton, C.C. McGehee, and B.P. Mann, Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator, Phys. D., vol. 239, no. 10, pp. 640–653, 2010. DOI: 10.1016/j.physd.2010.01.019.
  • J. Cao, et al., Nonlinear dynamic characteristics of variable inclination magnetically coupled piezoelectric energy harvesters, J. Vib. Acoust., vol. 137, no. 2, 2015. DOI: 10.1115/1.4029076.
  • B. Yan, S.X. Zhou, and G. Litak, Nonlinear analysis of the tristable energy harvester with a resonant circuit for performance enhancement, Int. J. Bifurcation Chaos., vol. 28, no. 07, pp. 1850092, 2018. DOI: 10.1142/S021812741850092X.
  • D.M. Huang, S.X. Zhou, and G. Litak, Analytical analysis of the vibrational tristable energy harvester with a RL resonant circuit, Nonlin. Dyn., vol. 97, no. 1, pp. 663–677, 2019. DOI: 10.1007/s11071-019-05005-6.
  • L. Tang, Y. Yang, and C.K. Soh, Improving functionality of vibration energy harvesters using magnets, J. Intell. Mater. Syst. Struct., vol. 23, no. 13, pp. 1433–1449, 2012. DOI: 10.1177/1045389X12443016.
  • S. Zhou, et al., Broadband tristable energy harvester: modeling and experiment verification, Appl. Energy, vol. 133, pp. 33–39, 2014. DOI: 10.1016/j.apenergy.2014.07.077.
  • N. Kong, et al., Resistive impedance matching circuit for piezoelectric energy harvesting, J. Intell. Mater. Syst. Struct., vol. 21, no. 13, pp. 1293–1302, 2010. DOI: 10.1177/1045389X09357971.
  • W.Q. Liu, et al., Wideband energy harvesting using a combination of an optimized synchronous electric charge extraction circuit and a bistable harvester, Smart Mater. Struct., vol. 22, no. 12, pp. 125038, 2013. DOI: 10.1088/0964-1726/22/12/125038.
  • Y.C. Shu and I.C. Lien, Analysis of power output for piezoelectric energy harvesting systems, Smart Mater. Struct., vol. 15, no. 6, pp. 1499–1512, 2006. DOI: 10.1088/0964-1726/15/6/001.
  • C.J. Rupp, M.L. Dunn, and K. Maute, Analysis of piezoelectric energy harvesting systems with non-linear circuits using the harmonic balance method, J. Intell. Mater. Syst. Struct., vol. 21, no. 14, pp. 1383–1396, 2010. DOI: 10.1177/1045389X10384167.
  • S. Zhou, et al., Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting, Eur. Phys. J. Appl. Phys., vol. 67, no. 3, pp. 30902, 2014. DOI: 10.1051/epjap/2014140190.
  • H.-X. Zou, et al., A broadband compressive-mode vibration energy harvester enhanced by magnetic force intervention approach, Appl. Phys. Lett., vol. 110, no. 16, pp. 163904, 2017. DOI: 10.1063/1.4981256.
  • L. Tang and Y. Yang, A nonlinear piezoelectric energy harvester with magnetic oscillator, Appl. Phys. Lett., vol. 101, no. 9, pp. 094102, 2012. DOI: 10.1063/1.4748794.
  • D. Upadrashta, Y. Yang, and L. Tang, Material strength consideration in the design optimization of nonlinear energy harvester, J. Intell. Mater. Syst. Struct., vol. 26, no. 15, pp. 1980–1994, 2015. DOI: 10.1177/1045389X14546651.
  • S. Timoshenko and S.W. Krieger, editors, Theory of Plates and Shells, McGraw-Hill, New York, 1959.
  • A. Erturk and D.J. Inman, A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters, J. Vib. Acoust., vol. 130, no. 4, pp. 041002, 2008. DOI: 10.1115/1.2890402.
  • A. Erturk and D.J. Inman, Piezoelectric Energy Harvesting, John Wiley & Sons, Chichester, West Sussex, United Kingdom, 2011.
  • S. Leadenham, Advanced Concepts in Nonlinear Piezoelectric Energy Harvesting: Intentionally Designed, Inherently Present, and Circuit Nonlinearities, Georgia Institute of Technology, Atlanta Georgia, USA, 2015.
  • D. Vokoun, et al., Magnetostatic interactions and forces between cylindrical permanent magnets, J. Magn. Magn. Mater., vol. 321, no. 22, pp. 3758–3763, 2009. DOI: 10.1016/j.jmmm.2009.07.030.
  • G. Sebald, et al., Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting, Smart Mater. Struct., vol. 20, no. 7, pp. 075022, 2011. DOI: 10.1088/0964-1726/20/7/075022.
  • I.C. Lien, et al., Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting, Smart Mater. Struct., vol. 19, no. 12, pp. 125009, 2010. DOI: 10.1088/0964-1726/19/12/125009.
  • J.R. Liang and W.H. Liao, On the influence of transducer internal loss in piezoelectric energy harvesting with SSHI interface, J. Intell. Mater. Syst. Struct., vol. 22, no. 5, pp. 503–512, 2011. DOI: 10.1177/1045389X11401447.
  • L. Tang, et al., Applicability of synchronized charge extraction technique for piezoelectric energy harvesting, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, Vol. 7977, 2011. DOI: 10.1117/12.880508.
  • L. Zhao, et al., Enhancement of galloping-based wind energy harvesting by synchronized switching interface circuits, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, vol. 9431, 2015. DOI: 10.1117/12.2084000.
  • S. Roundy, and P.K. Wright, A piezoelectric vibration based generator for wireless electronics, Smart Mater. Struct., vol. 13, no. 5, pp. 1131–1142, 2004. DOI: 10.1088/0964-1726/13/5/018.
  • Y. Yang and L. Tang, Equivalent circuit modeling of piezoelectric energy harvesters, J. Intell. Mater. Syst. Struct., vol. 20, no. 18, pp. 2223–2235, 2009. DOI: 10.1177/1045389X09351757.
  • H. Thorsten and M. Yiannos, CMOS Circuits for Piezoelectric Energy Harvesters. 1 ed. Springer Series in Advanced Microelectronics, Springer, Netherlands, XVII, 204, 2015.
  • Macro Fibre Composite (MFC) data sheet, Available from http://www.smart-material.com/mFc-productmain.html.
  • M.-G. Kang, et al., Recent progress on PZT based piezoelectric energy harvesting technologies, Actuators, vol. 5, no. 1, pp. 5, 2016. DOI: 10.3390/act5010005.
  • S.S. Rao, Mechanical Vibrations, Prentice Hall, Upper Saddle River, 2011.
  • COMSOL Multiphysics® v. 5.3. Piezoelectric devices module. Available from www.comsol.com. Stockholm, Sweden, 2017.
  • T. Eggborn, Analytical models to predict power harvesting with piezoelectric materials, Master’s, Thesis, Virginia Polytechnic Institute and State University, 2003.
  • D. Upadrashta and Y. Yang, Experimental investigation of performance reliability of macro fiber composite for piezoelectric energy harvesting applications, Sens. Actuators, A., vol. 244, pp. 223–232, 2016. DOI: 10.1016/j.sna.2016.04.043.
  • L. Tang, Y. Yang, and C.K. Soh, Toward broadband vibration-based energy harvesting, J. Intell. Mater. Syst. Struct., vol. 21, no. 18, pp. 1867–1897, 2010. DOI: 10.1177/1045389X10390249.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.