256
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Damage tolerance-based design of conformal antenna composite structure

ORCID Icon, , , &
Pages 5530-5541 | Received 15 Jul 2021, Accepted 15 Jul 2021, Published online: 06 Aug 2021

References

  • J. Tuss, A. J. Lockyer, K. H. Alt, et al., Conformal load-bearing antenna structure, AIAA Meeting Papers Disc., vol. 44, pp. 836–843, 1996.
  • A. J. Lockyer, J. N. Kudva, K. H. Alt, A. C. Goetz, and J. Tuss, Development of a conformal load-carrying smart-skin antenna for military aircraft, SPIE, vol. 2448, pp. 53–62, 1995.
  • M. A. Hopkins, et al., Smart skin conformal load-bearing antenna and other smart structures developments. AIAA-97-1163, pp. 521–530, 1997. DOI: 10.2514/6.1997-1163.
  • A. J. Lockyer, K. H. Alt, J. N. Kudva, R. W. Kinslow, and A. C. Goetz, Conformal load-bearing antenna structure (CLAS): initiative for multiple military and commercial applications, SPIE, vol. 3046, pp. 182–196, 1997.
  • A. J. Lockyer, et al., Prototype testing and evaluation of a structurally integrated conformal antenna installation in the vertical tail of a military aircraft. Proceedings-SPIE: The International Society for Optical Engineering. SPIE International Society for Optical, 1997.
  • A. J. Lockyer, J. N. Kudva, D. P. Coughlin, et al., Prototype testing and evaluation of a structurally integrated conformal antenna installation in the vertical tail of a military aircraft, SPIE, vol. 3046, pp. 173–181, 1997.
  • A. J. Lockyer, et al., Design and development of a conformal load-bearing smart skin antenna: overview of the AFRL smart skin structures technology demonstration (S3TD), Part of the SPIE Conference on Industrial and Commercial Applications of Smart Structures Technologies, Symposium on Smart Structures and Materials, International Society for Optics and Photonics, Newport Beach, California, 1999. DOI: 10.1117/12.351578.
  • K. H. Alt, A. J. Lockyer, D. P. Coughlin, J. N. Kudva, and J. Tuss, Overview of the DoD’s RF multifunction structural aperture (MUSTRAP) program, SPIE’s 8th Annual International Symposium on Smart Structures and Materials, International Society for Optics and Photonics, 2001.
  • C. S. You, W. Hwang, H. C. Park, et al., Microstrip antenna for SAR application with composite sandwich construction: surface-antenna-structure demonstration, Compos. Mater., vol. 37, no. 4, pp. 351–364, 2003. DOI: 10.1177/0021998303037004333.
  • C. S. You, W. Hwang, and S. Y. Eom, Design and fabrication of composite smart structures for communication, using structural resonance of radiated field, Smart Mater. Struct., vol. 14, no. 2, pp. 441–448, 2005. DOI: 10.1088/0964-1726/14/2/019.
  • D. Kim, C. S. You, and W. Hwang, Effect of adhesive bonds on electrical performance in multilayer composite antenna, Compos. Struct., vol. 90, no. 4, pp. 413–417, 2009. DOI: 10.1016/j.compstruct.2009.04.019.
  • L. Li and Z. Xie, Research on the structural technology of multifunctional composite smart skin antenna, National Symposium on Composite Mechanic, Sanya, Hainan, China, 2007.
  • Z. Xie, W. Zhao, P. Zhang, and X. Li, Design and development of conformal antenna composite structure, Smart Mater. Struct., vol. 26, no. 9, pp. 095009, 2017. DOI: 10.1088/1361-665X/aa7918.
  • J. Zhou, J. Huang, L. Song, D. Zhang, and Y. Ma, Electromechanical co-design and experiment of structurally integrated antenna, Smart Mater. Struct., vol. 24, no. 3, pp. 037004–037011, 2015. DOI: 10.1088/0964-1726/24/3/037004.
  • Y. W. Kwon, S. H. Yoon, and P. J. Sistare, Compressive failure of carbon-foam sandwich composites with holes and/or partial delamination, Compos. Struct., vol. 38, no. 1-4, pp. 573–580, 1997. DOI: 10.1016/S0263-8223(97)00093-7.
  • V. Vadakke and L. A. Carlsson, Experimental investigation of compression failure of sandwich specimens with face/core debond, Compos. B., vol. 35, no. 6-8, pp. 583–590, 2004. DOI: 10.1016/j.compositesb.2003.10.004.
  • J. Hang, Mechanical Properties of Composite Honeycomb Sandwich Structures with Damage Analysis and Experimental Validation, Xi'an Northwestern Polytechnical University, 2018.
  • Y. Jing, X. Yue, Z. Li, and Z. Xie, Influence from honeycomb core deletion on Ti-alloy honeycomb sandwich construction, Aeronaut. Manuf. Technol., vol. 16, pp. 143–145, 2013.
  • F. Wei, Assessment and Analysis of Repair to Composite Honeycomb Sandwich Structure, Nanjing University of Aeronautics and Astronautics, Nanjing, 2019.
  • ASTM, Standard Specification for Structural Durability for Small Aeroplanes, American Society for Testing and Materials, Philadelphia, PA, 2019. ASTM F3115.
  • X. Sish, Aircraft Design Manual: Load Strength and Stiffness, Aviation Industry Press, Beijing, 2001.
  • Airbus Ltd., Airbus A320 Structural Repair Manual, Airbus Ltd., France, 2011.
  • Boing Ltd., Boeing 737-700 Structural Repair Manual, Boing Ltd., Chicago, 2015.
  • W. Baozhong, Aircraft Design Manual: Structure Design, Aviation Industry Press, Beijing, 2001.
  • CST AG, CST User’s Manual, Computer Simulation Technology AG, Darmstadt, 2008.
  • ASTM. Standard Test Method for Edgewise Compressive Strength of Sandwich Constructions, American Society for Testing and Materials, Philadelphia, PA, 2007. ASTM C364.
  • Standards of PRC. Test Method for Flexural Properties of Sandwich Construction, Standardization Administration of China, Beijing, 2005. GB/T1456.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.