203
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced tensile strength, fracture toughness and piezoresistive performances of CNT based epoxy nanocomposites using toroidal stirring assisted ultra-sonication

ORCID Icon, , , , & ORCID Icon
Pages 5557-5566 | Received 29 Mar 2021, Accepted 18 Jul 2021, Published online: 29 Jul 2021

References

  • S. Liu, V. S. Chevali, Z. Xu, D. Hui, and H. Wang, A review of extending performance of epoxy resins using carbon nanomaterials, Compos. Part B Eng., vol. 136, pp. 197–214, 2018. DOI: 10.1016/j.compositesb.2017.08.020.
  • F. H. Gojny, M. H. G. Wichmann, B. Fiedler, and K. Schulte, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites - A comparative study, Compos. Sci. Technol., vol. 65, no. 15-16, pp. 2300–2313, 2005. DOI: 10.1016/j.compscitech.2005.04.021.
  • A. Hernández-Pérez, F. Avilés, A. May-Pat, A. Valadez-González, P. J. Herrera-Franco, and P. Bartolo-Pérez, Effective properties of multiwalled carbon nanotube/epoxy composites using two different tubes, Compos. Sci. Technol., vol. 68, no. 6, pp. 1422–1431, 2008. DOI: 10.1016/j.compscitech.2007.11.001.
  • M. Quaresimin, K. Schulte, M. Zappalorto, and S. Chandrasekaran, Toughening mechanisms in polymer nanocomposites: From experiments to modelling, Compos. Sci. Technol., vol. 123, pp. 187–204, 2016. DOI: 10.1016/j.compscitech.2015.11.027.
  • F. H. Gojny, M. H. G. Wichmann, U. Köpke, B. Fiedler, and K. Schulte, Carbon nanotube-reinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content, Compos. Sci. Technol., vol. 64, no. 15, pp. 2363–2371, 2004. DOI: 10.1016/j.compscitech.2004.04.002.
  • E. Moradi, and A. Zeinedini, On the mixed mode I/II/III inter-laminar fracture toughness of cotton/epoxy laminated composites, Theor. Appl. Fract. Mech., vol. 105, pp. 102400, 2020. DOI: 10.1016/j.tafmec.2019.102400.
  • A. Zeinedini, M. M. Shokrieh, and A. Ebrahimi, The effect of agglomeration on the fracture toughness of CNTs-reinforced nanocomposites, Theor. Appl. Fract. Mech., vol. 94, pp. 84–94, 2018. DOI: 10.1016/j.tafmec.2018.01.009.
  • A. Zeinedini, A novel fixture for mixed mode I/II/III fracture testing of brittle materials, Fatigue Fract. Eng. Mater. Struct. ., vol. 42, no. 4, pp. 838–853, 2019. DOI: 10.1111/ffe.12955.
  • X. Shi, M. K. Hassanzadeh-Aghdam, and R. Ansari, A comprehensive micromechanical analysis of the thermoelastic properties of polymer nanocomposites containing carbon nanotubes with fully random microstructures, Mech. Adv. Mater. Struct., vol. 28, no. 4, pp. 331–342, 2021. DOI: 10.1080/15376494.2018.1564852.
  • V. Varma, and V. Rajamohan, Enhancement of low cycle vibration induced fatigue life of composite beam having central hole using CNT reinforcement: An experimental study, Mech. Adv. Mater. Struct., vol. 27, no. 24, pp. 2059–2067, 2020. DOI: 10.1080/15376494.2018.1541489.
  • B. De Vivo, et al., Comparison of the physical properties of epoxy-based composites filled with different types of carbon nanotubes for aeronautic applications, Adv. Polym. Technol., vol. 32, pp. 474–485, 2012. DOI: 10.1002/adv.
  • C. Tuloup, W. Harizi, Z. Aboura, Y. Meyer, K. Khellil, and R. Lachat, On the use of in-situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: A literature review, Compos. Struct., vol. 215, pp. 127–149, 2019. DOI: 10.1016/j.compstruct.2019.02.046.
  • N. Forintos, and T. Czigany, Multifunctional application of carbon fiber reinforced polymer composites: Electrical properties of the reinforcing carbon fibers – A short review, Compos. Part B Eng., vol. 162, pp. 331–343, 2019. DOI: 10.1016/j.compositesb.2018.10.098.
  • A. Esmaeili, A. Urena, and A. M. Hamouda, Piezoresistive characterization of epoxy based nanocomposites loaded with SWCNTs-DWCNTs in tensile and fracture tests, Polymer Composites, vol. 41, pp. 1–12, 2020. DOI: 10.1002/pc.25558.
  • Q. Wang, J. Dai, W. Li, Z. Wei, and J. Jiang, The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites, Compos. Sci. Technol., vol. 68, no. 7-8, pp. 1644–1648, 2008. DOI: 10.1016/j.compscitech.2008.02.024.
  • A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, Mechanical and electrical properties of a MWNT/epoxy composite, Compos. Sci. Technol., vol. 62, no. 15, pp. 1993–1998, 2002. DOI: 10.1016/S0266-3538(02)00129-X.
  • A. Y. Jang, S. H. Lim, D. H. Kim, HDo Yun, G. C. Lee, and S. Y. Seo, Strain-Detecting properties of hybrid PE and steel fibers reinforced cement composite (Hy-FRCC) with Multi-Walled carbon nanotube (MWCNT) under repeated compression, Results Phys., vol. 18, pp. 103199, 2020. DOI: 10.1016/j.rinp.2020.103199.
  • Y. Li, B. Sun, S. Sockalingam, Z. Pan, W. Lu, and T. W. Chou, Influence of transverse compression on axial electromechanical properties of carbon nanotube fibers, Mater Des., vol. 188, pp. 108463, 2020. DOI: 10.1016/j.matdes.2019.108463.
  • W. Lee, I. Chung, K. Baek, S. Im, and M. Cho, Multiscale modeling to characterize electromechanical behaviors of CNT/polymer nanocomposites considering the matrix damage and interfacial debonding, Mech. Adv. Mater. Struct., pp. 1–20, 2020. DOI: 10.1080/15376494.2020.1861396.
  • X. Cao, et al., Strain sensing behaviors of epoxy nanocomposites with carbon nanotubes under cyclic deformation, Polymer (United Kingdom)., vol. 112, pp. 1–9, 2017. DOI: 10.1016/j.polymer.2017.01.068.
  • L. Vertuccio, L. Guadagno, G. Spinelli, P. Lamberti, V. Tucci, and S. Russo, Piezoresistive properties of resin reinforced with carbon nanotubes for health-monitoring of aircraft primary structures, Compos. Part B Eng., vol. 107, pp. 192–202, 2016. DOI: 10.1016/j.compositesb.2016.09.061.
  • G. Spinelli, P. Lamberti, V. Tucci, L. Vertuccio, and L. Guadagno, Experimental and theoretical study on piezoresistive properties of a structural resin reinforced with carbon nanotubes for strain sensing and damage monitoring, Compos. Part B Eng., vol. 145, pp. 90–99, 2018. DOI: 10.1016/j.compositesb.2018.03.025.
  • X. F. Sánchez-Romate, et al., Highly sensitive strain gauges with carbon nanotubes: From bulk nanocomposites to multifunctional coatings for damage sensing, Appl. Surf. Sci., vol. 424, pp. 213–234, 2017. DOI: 10.1016/j.apsusc.2017.03.
  • A. Esmaeili, et al., Strain and crack growth sensing capability of SWCNT reinforced epoxy in tensile and mode I fracture tests, Compos. Sci. Technol., vol. 186, pp. 107918, 2020. DOI: 10.1016/j.compscitech.2019.107918.
  • H. Tanabi, and M. Erdal, Effect of CNTs dispersion on electrical, mechanical and strain sensing properties of CNT/epoxy nanocomposites, Results Phys., vol. 12, pp. 486–503, 2019. DOI: 10.1016/j.rinp.2018.11.081.
  • P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Compos. Part A. Appl. Sci. Manuf., vol. 41, no. 10, pp. 1345–1367, 2010. DOI: 10.1016/j.compositesa.2010.07.003.
  • K. L. Lu, R. M. Lago, Y. K. Chen, M. L. H. Green, P. J. F. Harris, and S. C. Tsang, Mechanical damage of carbon nanotubes by ultrasound, Carbon N Y., vol. 34, no. 6, pp. 814–816, 1996. DOI: 10.1016/0008-6223(96)89470-X.
  • X. F. Sánchez-Romate, J. Artigas, A. Jiménez-Suárez, M. Sánchez, A. Güemes, and A. Ureña, Critical parameters of carbon nanotube reinforced composites for structural health monitoring applications : Empirical results versus theoretical predictions, Compos. Sci. Technol., vol. 171, pp. 44–53, 2019. DOI: 10.1016/j.compscitech.2018.12.010.
  • J. Cha, G. H. Jun, J. K. Park, J. C. Kim, H. J. Ryu, and S. H. Hong, Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes, Compos. Part B Eng., vol. 129, pp. 169–179, 2017. DOI: 10.1016/j.compositesb.2017.07.070.
  • X. Liu, W. Liu, Q. Xia, J. Feng, Y. Qiu, and F. Xu, Highly tough and strain sensitive plasma functionalized carbon nanotube/epoxy composites, Compos. Part A. Appl. Sci. Manuf., vol. 121, pp. 123–129, 2019. DOI: 10.1016/j.compositesa.2019.03.015.
  • J. Li, P. C. Ma, W. S. Chow, C. K. To, B. Z. Tang, and J. K. Kim, Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes, Adv. Funct. Mater., vol. 17, no. 16, pp. 3207–3215, 2007. DOI: 10.1002/adfm.200700065.
  • A. Montazeri, and M. Chitsazzadeh, Effect of sonication parameters on the mechanical properties of multi-walled carbon nanotube/epoxy composites, Mater Des., vol. 56, pp. 500–508, 2014. DOI: 10.1016/j.matdes.2013.11.013.
  • A. M. S. Hamouda, L. Rovatti, and A. Ure, Synergistic effects of double-walled carbon nanotubes and nanoclays on mechanical, electrical and piezoresistive properties of epoxy based nanocomposites, Composites Science and Technology vol. 200, pp. 1–11, 2020. DOI: 10.1016/j.compscitech.2020.108459.
  • A. Esmaeili, et al., An experimental and numerical investigation of highly strong and tough epoxy based nanocomposite by addition of MWCNTs , Tensile and Mode I Fracture Tests., vol. 252, pp. 1–13, 2020. DOI: 10.1016/j.compstruct.2020.112692.
  • A. Esmaeili, C. Sbarufatti, R. Casati, A. Jiménez-Suárez, A. Ureña, and A. M. S. Hamouda, Effective addition of nanoclay in enhancement of mechanical and electromechanical properties of SWCNT reinforced epoxy: Strain sensing and crack-induced piezoresistivity. Theor Appl Fract Mech vol. 110, pp. 1–11, 2020. DOI: 10.1016/j.tafmec.2020.102831.
  • M. R. Ayatollahi, S. Shadlou, and M. M. Shokrieh, Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions, Mater Des., vol. 32, no. 4, pp. 2115–2124, 2011. DOI: 10.1016/j.matdes.2010.11.034.
  • N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor, Acta Mater. ., vol. 56, no. 13, pp. 2929–2936, 2008. DOI: 10.1016/j.actamat.2008.02.030.
  • J. G. Simmons, Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film, J Appl Phys., vol. 34, no. 6, pp. 1793–1803, 1963. DOI: 10.1063/1.1702682.
  • A. B. Oskouyi, U. Sundararaj, and P. Mertiny, Tunneling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets, Materials (Basel) )., vol. 7, no. 4, pp. 2501–2521, 2014. DOI: 10.3390/ma7042501.
  • H. Mahmood, L. Vanzetti, M. Bersani, and A. Pegoretti, Mechanical properties and strain monitoring of glass-epoxy composites with graphene-coated fibers, Compos Part A Appl Sci Manuf., vol. 107, pp. 112–123, 2018. DOI: 10.1016/j.compositesa.2017.12.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.