249
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Data-driven analysis of concrete-filled steel-tube CFRP-confined NSC columns

&
Pages 5667-5688 | Received 06 Jun 2021, Accepted 26 Jul 2021, Published online: 04 Aug 2021

References

  • L.-H. Han, W. Li, and R. Bjorhovde, Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members, J. Constr. Steel Res., vol. 100, pp. 211–228, 2014. DOI: 10.1016/j.jcsr.2014.04.016.
  • A. Raza, et al., Axial performance of GFRP composite bars and spirals in circular hollow concrete columns. In: Structures, vol. 29. Elsevier, Leroy Gardner, UK, pp. 600–613, 2021. DOI: 10.1016/j.istruc.2020.11.043.
  • A. Raza, et al., Structural performance of FRP-RC compression members wrapped with FRP composites. In: Structures, vol. 27. Elsevier, Leroy Gardner, UK, pp. 1693–1709, 2020. DOI: 10.1016/j.istruc.2020.07.071.
  • A. Raza, et al., Performance evaluation of hybrid fiber reinforced low strength concrete cylinders confined with CFRP wraps. In: Structures, vol. 31. Elsevier, Leroy Gardner, UK, pp. 182–189, 2021. DOI: 10.1016/j.istruc.2021.01.103.
  • A. Raza, et al., Prediction of axial load-carrying capacity of GFRP-reinforced concrete columns through artificial neural networks. In: Structures, vol. 28. Elsevier, Leroy Gardner, UK, pp. 1557–1571, 2020. DOI: 10.1016/j.istruc.2020.10.010.
  • A. Raza, et al., Finite element modelling and theoretical predictions of FRP-reinforced concrete columns confined with various FRP-tubes. In: Structures, vol. 26. Elsevier, Leroy Gardner, UK, pp. 626–638, 2020. DOI: 10.1016/j.istruc.2020.04.033.
  • A. Fam, F.S. Qie, and S. Rizkalla, Concrete-filled steel tubes subjected to axial shortening and lateral cyclic loads, J. Struct. Eng., vol. 130, no. 4, pp. 631–640, 2004. DOI: 10.1061/(ASCE)0733-9445(2004)130:4(631).
  • M.D. O'Shea, and R.Q. Bridge, Design of circular thin-walled concrete filled steel tubes, J. Struct. Eng., vol. 126, no. 11, pp. 1295–1303, 2000. DOI: 10.1061/(ASCE)0733-9445(2000)126:11(1295).
  • Y. Xiao, Applications of FRP composites in concrete columns, Adv. Struct. Eng., vol. 7, no. 4, pp. 335–343, 2004. DOI: 10.1260/1369433041653552.
  • Z. Chen, S. Dong, and Y. Du, Experimental study and numerical analysis on seismic performance of FRP confined high-strength rectangular concrete-filled steel tube columns, Thin-Walled Struct., vol. 162, pp. 107560, 2021. DOI: 10.1016/j.tws.2021.107560.
  • S. Cao, C. Wu, and W. Wang, Behavior of FRP confined UHPFRC-filled steel tube columns under axial compressive loading, J. Build. Eng., vol. 32, pp. 101511, 2020. DOI: 10.1016/j.jobe.2020.101511.
  • K. NadimiShahraki, and M. Reisi, Stress-strain based method for analysis and design of FRP wrapped reinforced concrete columns. In: Structures, vol. 28. Elsevier, Leroy Gardner, UK, pp. 1818–1830, 2020. DOI: 10.1016/j.istruc.2020.10.002.
  • C. Feng, F. Yu, and Y. Fang, Mechanical behavior of PVC tube confined concrete and PVC-FRP confined concrete: A review. In: Structures, vol. 31. Elsevier, Leroy Gardner, UK, pp. 613–635, 2021. DOI: 10.1016/j.istruc.2021.01.093.
  • M. Zakir, F.A. Sofi, and J.A. Naqash, Experimentally verified behavior and confinement model for concrete in circular stiffened FRP-concrete-steel double-skin tubular columns. In: Structures, vol. 33. Elsevier, Leroy Gardner, UK, pp. 1144–1157, 2021. DOI: 10.1016/j.istruc.2021.05.010.
  • J. Teng, et al., Three-dimensional finite element analysis of reinforced concrete columns with FRP and/or steel confinement, Eng. Struct., vol. 97, pp. 15–28, 2015. DOI: 10.1016/j.engstruct.2015.03.030.
  • L. Zeng, et al., Experimental study of seismic performance of full-scale basalt FRP-recycled aggregate concrete-steel tubular columns, Thin-Walled Struct., vol. 151, pp. 106185, 2020. DOI: 10.1016/j.tws.2019.106185.
  • J. Cai, et al., Behavior of geopolymeric recycled aggregate concrete-filled FRP tube (GRACFFT) columns under lateral cyclic loading, Eng. Struct., vol. 222, pp. 111047, 2020. DOI: 10.1016/j.engstruct.2020.111047.
  • G. Giakoumelis, and D. Lam, Axial capacity of circular concrete-filled tube columns, J. Constr. Steel Res., vol. 60, no. 7, pp. 1049–1068, 2004. DOI: 10.1016/j.jcsr.2003.10.001.
  • D. Lam, and L. Gardner, Structural design of stainless steel concrete filled columns, J. Constr. Steel Res., vol. 64, no. 11, pp. 1275–1282, 2008. DOI: 10.1016/j.jcsr.2008.04.012.
  • J.R. Liew, and D. Xiong, Effect of preload on the axial capacity of concrete-filled composite columns, J. Constr. Steel Res., vol. 65, no. 3, pp. 709–722, 2009. DOI: 10.1016/j.jcsr.2008.03.023.
  • V.W. Tam, Z.-B. Wang, and Z. Tao, Behaviour of recycled aggregate concrete filled stainless steel stub columns, Mater. Struct., vol. 47, no. 1–2, pp. 293–310, 2014. DOI: 10.1617/s11527-013-0061-1.
  • T. Perea, et al., Full-scale tests of slender concrete-filled tubes: Interaction behavior, J. Struct. Eng., vol. 140, no. 9, pp. 04014054, 2014. DOI: 10.1061/(ASCE)ST.1943-541X.0000949.
  • F-x Ding, et al., Mechanical behavior of circular and square concrete filled steel tube stub columns under local compression, Thin-Walled Struct., vol. 94, pp. 155–166, 2015. DOI: 10.1016/j.tws.2015.04.020.
  • J.-P. Liu, et al., Axial behaviour of circular steel tubed concrete stub columns confined by CFRP materials, Constr. Build. Mater., vol. 168, pp. 221–231, 2018. DOI: 10.1016/j.conbuildmat.2018.02.131.
  • A.M. Sharif, G.M. Al-Mekhlafi, and M.A. Al-Osta, Structural performance of CFRP-strengthened concrete-filled stainless steel tubular short columns, Eng. Struct., vol. 183, pp. 94–109, 2019. DOI: 10.1016/j.engstruct.2019.01.011.
  • T. Xu, J. Liu, and Y. Guo, Design method of short circular FRP-steel composite tubed RC columns under eccentric compression, Compos. Struct., vol. 262, pp. 113359, 2021. DOI: 10.1016/j.compstruct.2020.113359.
  • Y.-H. Wang, et al., Coupled ultimate capacity of CFRP confined concrete-filled steel tube columns under compression-bending-torsion load. In: Structures, vol. 31. Elsevier, Leroy Gardner, UK, pp. 558–575, 2021. DOI: 10.1016/j.istruc.2021.01.086.
  • J. Yang, et al., Behavior of eccentrically loaded circular CFRP-steel composite tubed steel-reinforced high-strength concrete columns, J. Constr. Steel Res., vol. 170, pp. 106101, 2020. DOI: 10.1016/j.jcsr.2020.106101.
  • M.H. Hameed, A.H.A. Al-Ahmed, and Z.K. Abbas, Enhancing the strength of reinforced concrete columns using steel embedded tubes, Mech. Adv. Mater. Struct., pp. 1–16, 2020.
  • Y-f Zhang, and Z-q Zhang, Study on equivalent confinement coefficient of composite CFST column based on unified theory, Mech. Adv. Mater. Struct., vol. 23, no. 1, pp. 22–27, 2016. DOI: 10.1080/15376494.2014.922650.
  • C. Dong, A. Kwan, and J. Ho, A constitutive model for predicting the lateral strain of confined concrete, Eng. Struct., vol. 91, pp. 155–166, 2015. DOI: 10.1016/j.engstruct.2015.02.014.
  • A. Kwan, C. Dong, and J. Ho, Axial and lateral stress–strain model for FRP confined concrete, Eng. Struct., vol. 99, pp. 285–295, 2015. DOI: 10.1016/j.engstruct.2015.04.046.
  • M. Lai, L. Hanzic, and J.C. Ho, Fillers to improve passing ability of concrete, Struct. Concr., vol. 20, no. 1, pp. 185–197, 2019. DOI: 10.1002/suco.201800047.
  • H.R. Ashrafi, M. Jalal, and K. Garmsiri, Prediction of load–displacement curve of concrete reinforced by composite fibers (steel and polymeric) using artificial neural network, Expert Syst. Appl., vol. 37, no. 12, pp. 7663–7668, 2010. DOI: 10.1016/j.eswa.2010.04.076.
  • A. Cevik, and A.F. Cabalar, A genetic‐programming‐based formulation for the strength enhancement of fiber‐reinforced‐polymer‐confined concrete cylinders, J. Appl. Polym. Sci., vol. 110, no. 5, pp. 3087–3095, 2008. DOI: 10.1002/app.28839.
  • A. Cevik, and I.H. Guzelbey, Neural network modeling of strength enhancement for CFRP confined concrete cylinders, Build. Environ., vol. 43, no. 5, pp. 751–763, 2008. DOI: 10.1016/j.buildenv.2007.01.036.
  • A. Cevik, M.T. Göğüş, İH. Güzelbey, and H. Filiz, Soft computing based formulation for strength enhancement of CFRP confined concrete cylinders, Adv. Eng. Softw., vol. 41, no. 4, pp. 527–536, 2010. DOI: 10.1016/j.advengsoft.2009.10.015.
  • H. Naderpour, A. Kheyroddin, and G.G. Amiri, Prediction of FRP-confined compressive strength of concrete using artificial neural networks, Compos. Struct., vol. 92, no. 12, pp. 2817–2829, 2010. DOI: 10.1016/j.compstruct.2010.04.008.
  • H. Elsanadedy, Y.A. Al-Salloum, H. Abbas, and S.H. Alsayed, Prediction of strength parameters of FRP-confined concrete, Compos. Part B: Eng., vol. 43, no. 2, pp. 228–239, 2012. DOI: 10.1016/j.compositesb.2011.08.043.
  • T.M. Pham, and M.N.S. Hadi, Predicting stress and strain of FRP-confined square/rectangular columns using artificial neural networks, J. Compos. Constr., vol. 18, no. 6, pp. 04014019, 2014. DOI: 10.1061/(ASCE)CC.1943-5614.0000477.
  • A. Cascardi, F. Micelli, and M.A. Aiello, An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns, Eng. Struct., vol. 140, pp. 199–208, 2017. DOI: 10.1016/j.engstruct.2017.02.047.
  • A. Hadhood, H.M. Mohamed, and B. Benmokrane, A. Nanni, and C.K. Shield, Assessment of design guidelines of concrete columns reinforced with glass fiber-reinforced polymer bars, ACI Struct. J., vol. 116, no. 4, pp. 193–207, 2019. DOI: 10.14359/51715663.
  • H. Naderpour, et al., Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods, Compos. Struct., vol. 215, pp. 69–84, 2019. DOI: 10.1016/j.compstruct.2019.02.048.
  • H. Naderpour, et al., Adaptive neuro‐fuzzy inference modeling and sensitivity analysis for capacity estimation of fiber-reinforced polymer ‐strengthened circular reinforced concrete columns, Expert Syst., vol. 36, no. 4, pp. e12410, 2019. DOI: 10.1111/exsy.12410.
  • T.-T. Le, Practical machine learning-based prediction model for axial capacity of square CFST columns, Mech. Adv. Mater. Struct., pp. 1–16, 2020.
  • V.I. Patel, Q.Q. Liang, and M.N. Hadi, Nonlinear analysis of axially loaded circular concrete-filled stainless steel tubular short columns, J. Constr. Steel Res., vol. 101, pp. 9–18, 2014. DOI: 10.1016/j.jcsr.2014.04.036.
  • Z. Tao, et al., Nonlinear analysis of concrete-filled square stainless steel stub columns under axial shortening, J. Constr. Steel Res., vol. 67, no. 11, pp. 1719–1732, 2011. DOI: 10.1016/j.jcsr.2011.04.012.
  • E. Ellobody, B. Young, and D. Lam, Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns, J. Constr. Steel Res., vol. 62, no. 7, pp. 706–715, 2006. DOI: 10.1016/j.jcsr.2005.11.002.
  • T.I. Altanopoulos, I.G. Raftoyiannis, and D. Polyzois, Finite element method for the static behavior of tapered poles made of glass fiber reinforced polymer, Mech. Adv. Mater. Struct., pp. 1–10, 2020.
  • Q.Q. Liang, and S. Fragomeni, Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading, J. Constr. Steel Res., vol. 65, no. 12, pp. 2186–2196, 2009. DOI: 10.1016/j.jcsr.2009.06.015.
  • ABAQUS. ABAQUS, Standard User’s Manual, Version 6.14, Dassault Systemes. Providence, RI: SIMULIA Corp., 2014.
  • Afaq Ahmad, and Ali Raza, Reliability analysis of strength models for CFRP-confined concrete cylinders, Compos. Struct., vol. 244, pp. 112312, 2020. DOI: 10.1016/j.compstruct.2020.112312.
  • Xu Chang, Zhong Liang Ru, Wei Zhou, and Yong-Bin Zhang, Study on concrete-filled stainless steel–carbon steel tubular (CFSCT) stub columns under compression, Thin-Walled Struct., vol. 63, pp. 125–133, 2013. DOI: 10.1016/j.tws.2012.10.002.
  • Hongyuan Tang, Junlong Chen, Luyao Fan, Xujie Sun, and Chunmei Peng, Experimental investigation of FRP-confined concrete-filled stainless steel tube stub columns under axial shortening, Thin-Walled Struct., vol. 146, pp. 106483, 2020. DOI: 10.1016/j.tws.2019.106483.
  • J.B. Mander, M.J. Priestley, and R. Park, Theoretical stress-strain model for confined concrete, J. Struct. Eng., vol. 114, no. 8, pp. 1804–1826, 1988. DOI: 10.1061/(ASCE)0733-9445(1988)114:8(1804).
  • Hsuan-Teh Hu, Chiung-Shiann Huang, Ming-Hsien Wu, and Yih-Min Wu, Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect, J. Struct. Eng., vol. 129, no. 10, pp. 1322–1329, 2003. DOI: 10.1061/(ASCE)0733-9445(2003)129:10(1322).
  • M. Hassanein, Numerical modelling of concrete-filled lean duplex slender stainless steel tubular stub columns, J. Constr. Steel Res., vol. 66, no. 8–9, pp. 1057–1068, 2010. DOI: 10.1016/j.jcsr.2010.03.008.
  • SJPHoSUoT Majewski, The Mechanics of Structural Concrete in Terms of Elasto-Plasticity. Gliwice: Publishing House of Silesian University of Technology, 2003.
  • CEN, Design of concrete structures—Part 1-1: General rules and rules for buildings, Eurocode 2, 2004.
  • B.L. Wahalathantri, A material model for flexural crack simulation in reinforced concrete elements using ABAQUS, Proceedings of the First International Conference on Engineering, Designing and Developing the Built Environment for Sustainable Wellbeing. Queensland University of Technology, 2011.
  • Aikaterini S. Genikomsou, and Maria Anna Polak, Maria Anna Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS, Eng. Struct., vol. 98, pp. 38–48, 2015. DOI: 10.1016/j.engstruct.2015.04.016.
  • Yong Xu, Hongyuan Tang, Junlong Chen, Yigang Jia, and Ruizhong Liu, Numerical analysis of CFRP-confined concrete-filled stainless steel tubular stub columns under axial shortening, J. Build. Eng., vol. 37, pp. 102130, 2021. DOI: 10.1016/j.jobe.2020.102130.
  • D.I. Kachlakev, Finite Element Modeling of Reinforced Concrete Structures Strengthened with FRP Laminates, Oregon: Department of Transportation. Research Group, 2001.
  • A. Raza, Qu Z. Khan, and A. Ahmad, Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS, Adv. Civ. Eng., vol. 2019, pp. 1–21, 2019. DOI: 10.1155/2019/1745341.
  • N.F. Hany, E.G. Hantouche, and M.H. Harajli, Finite element modeling of FRP-confined concrete using modified concrete damaged plasticity, Eng. Struct., vol. 125, pp. 1–14, 2016. DOI: 10.1016/j.engstruct.2016.06.047.
  • Z. Hashin, and A. Rotem, A fatigue failure criterion for fiber reinforced materials, J. Compos. Mater., vol. 7, no. 4, pp. 448–464, 1973. DOI: 10.1177/002199837300700404.
  • Z. Hashin, Failure criteria for unidirectional fiber composites, J. Appl. Mech., vol. 47, no. 2, pp. 329–334, 1980. DOI: 10.1115/1.3153664.
  • Y. Shi, T. Swait, and C. Soutis, Modelling damage evolution in composite laminates subjected to low velocity impact, J Compos. Struct., vol. 94, no. 9, pp. 2902–2913, 2012. DOI: 10.1016/j.compstruct.2012.03.039.
  • M. Najafgholipour, et al., Finite element analysis of reinforced concrete beam-column connections with governing joint shear failure mode, Latin Am. J. Solids Struct., vol. 14, no. 7, pp. 1200–1225, 2017. DOI: 10.1590/1679-78253682.
  • L. Lam, and J. Teng, Design-oriented stress–strain model for FRP-confined concrete, Constr. Build. Mater., vol. 17, no. 6–7, pp. 471–489, 2003. DOI: 10.1016/S0950-0618(03)00045-X.
  • M.N. Fardis, and H.H. Khalili, FRP-encased concrete as a structural material, Mag. Concr. Res., vol. 34, no. 121, pp. 191–202, 1982. DOI: 10.1680/macr.1982.34.121.191.
  • K. Newman, and J. Newman, Failure theories and design criteria for plain concrete, Struct. Solid Mech. Eng. Des., pp. 963–995, 1971.
  • V.M. Karbhari, and Y. Gao, Composite jacketed concrete under uniaxial shortening—Verification of simple design equations, J. Mater. Civ. Eng., vol. 9, no. 4, pp. 185–193, 1997. DOI: 10.1061/(ASCE)0899-1561(1997)9:4(185).
  • H.A. Toutanji, Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets, ACI Mater. J., vol. 96, no. 3, pp. 397–404, 1999.
  • J. Teng, et al., Refinement of a design-oriented stress–strain model for FRP-confined concrete, J. Compos. Constr., vol. 13, no. 4, pp. 269–278, 2009. DOI: 10.1061/(ASCE)CC.1943-5614.0000012.
  • F.E. Richart, A. Brandtzaeg, and R.L. Brown, Failure of Plain and Spirally Reinforced Concrete in Compression, University of Illinois at Urbana Champaign, College of Engineering, Illinois, USA, 1929.
  • M. Samaan, A. Mirmiran, and M. Shahawy, Model of concrete confined by fiber composites, J. Struct. Eng., vol. 124, no. 9, pp. 1025–1031, 1998. DOI: 10.1061/(ASCE)0733-9445(1998)124:9(1025).
  • M. Saafi, H.A. Toutanji, and Z. Li, Behavior of concrete columns confined with fiber reinforced polymer tubes, ACI Mater. J., vol. 96, no. 4, pp. 500–509, 1999.
  • K. Miyauchi, Estimation of strengthening effects with carbon fiber sheet for concrete column, Proceedings of the 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Japan Concrete Institute, 1997.
  • S. Matthys, H. Toutanji, Katrien Audenaert, and Luc Taerwe, Axial load behavior of large-scale columns confined with fiber- reinforced polymer composites, ACI Struct. J., vol. 102, no. 2, pp. 258, 2005.
  • M. Lai, et al., A stress-path dependent stress-strain model for FRP-confined concrete, Eng. Struct., vol. 203, pp. 109824, 2020. DOI: 10.1016/j.engstruct.2019.109824.
  • M. Lai, et al., A path dependent stress-strain model for concrete-filled-steel-tube column, Eng. Struct., vol. 211, pp. 110312, 2020. DOI: 10.1016/j.engstruct.2020.110312.
  • J. Ho, et al., A path dependent constitutive model for CFFT column, Eng. Struct., vol. 210, pp. 110367, 2020. DOI: 10.1016/j.engstruct.2020.110367.
  • O. Zhao, S. Afshan, and L. Gardner, Structural response and continuous strength method design of slender stainless steel cross-sections, Eng. Struct., vol. 140, pp. 14–25, 2017. DOI: 10.1016/j.engstruct.2017.02.044.
  • C. Buchanan, L. Gardner, and A. Liew, The continuous strength method for the design of circular hollow sections, J. Constr. Steel Res., vol. 118, pp. 207–216, 2016. DOI: 10.1016/j.jcsr.2015.11.006.
  • A. Cladera, and A.J.E.S. Marí, Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part I: beams without stirrups, Eng. Struct., vol. 26, no. 7, pp. 917–926, 2004. DOI: 10.1016/j.engstruct.2004.02.010.
  • A. Cladera, and AJEs Mari, Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part II: beams with stirrups, Eng. Struct., vol. 26, no. 7, pp. 927–936, 2004. DOI: 10.1016/j.engstruct.2004.02.011.
  • Y.A. LeCun, et al., Efficient backprop. In: Montavon G., Neural Networks: Tricks of the Trade. Springer, Berlin, Heidelberg, pp. 9–48, 2012.
  • A. Krogh, and J. Vedelsby, Neural network ensembles, cross validation, and active learning, Adv. Neural Inf. Process. Syst., vol. 7, pp. 21–238, 1995.
  • J. Utans, J. Moody, S. Rehfuss, and H. Siegelmannt, Input variable selection for neural networks: application to predicting the U.S. business cycle, IEEE Trans. Knowl. Data Eng., pp. 118–122, 1995.
  • G. Castellano, and A.M. Fanelli, Variable selection using neural-network models, Neurocomputing, vol. 31, no. 1–4, pp. 1–13, 2000. DOI: 10.1016/S0925-2312(99)00146-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.