1,841
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Parametric linear finite element stress and stability analysis of isotropic and orthotropic self-supporting Miura-ori structures

, , , &
Pages 5808-5822 | Received 17 May 2021, Accepted 03 Aug 2021, Published online: 18 Oct 2021

References

  • B. Castanie, C. Bouvet, and M. Ginot, Review of composite sandwich structure in aeronautic applications, Compos. Part C, vol. 1, pp. 100004, 2020. DOI: 10.1016/j.jcomc.2020.100004.
  • S. Pantelakis and K. Tserpes, Revolutionizing Aircraft Materials and Processes, Springer Nature Switzerland AG, 2020. DOI: 10.1007/978-3-030-35346-9.
  • M. Palmu, Folded and unfolded - Using tessellation patterns for foldable packaging, M.Sc. thesis, Aalto University, Espoo, 2019.
  • M. Schenk, Folded shell structures, D.Sc. thesis, University of Cambridge, Cambridge, UK, 2011.
  • N. Turner, B. Goodwine, and M. Sen, A review of origami applications in mechanical engineering, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., vol. 230, no. 14, pp. 2345–2362, 2016. DOI: 10.1177/0954406215597713.
  • X. M. Xiang, G. Lu, and Z. You, Energy absorption of origami inspired structures and materials, Thin-Walled Struct., vol. 157, pp. 107130, 2020. DOI: 10.1016/j.tws.2020.107130.
  • E. Baranger, C. Cluzel, and P.-A. Guidault, Modelling of the behaviour of aramid folded cores up to global crushing, Strain Int. J. Exp. Mech., vol. 47, pp. 170–178, 2011. DOI: 10.1111/j.1475-1305.2010.00753.x.
  • B. B. Basily and E. A. Elsayed, Dynamic axial crushing of multilayer core structures of folded Chevron patterns, IJMPT, vol. 21, no. 1/2/3, pp. 169–185, 2004. DOI: 10.1504/IJMPT.2004.004750.
  • B. B. Basily and E. A. Elsayed, Design and Development of Lightweight Sandwich Structures with Thin Sheet Folded Cores, Working papers, Department of Industrial and Systems Engineering, Rutgers University, New Brunswick, NJ, USA, 2005.
  • B. Bender, S. Fischer, and K. Drechsler, Optimizing a foldcore concerning density specific stiffness properties, SAMPE Europe International Conference (SEICO-11), Paris, France, 2011.
  • S. Fischer, Realistic Fe simulation of foldcore sandwich structures, Int. J. Mech. Mater. Eng., vol. 10, no. 1, pp. 1–11, 2015. DOI: 10.1186/s40712-015-0041-z.
  • J. M. Gattas, W. Lv, and Y. Chen, Rigid-foldable tubular arches, Eng. Struct., vol. 145, pp. 246–253, 2017. DOI: 10.1016/j.engstruct.2017.04.037.
  • S. Heimbs, P. Middendorf, and M. Maier, Numerical determination of the nonlinear effective mechanical properties of folded core structures for aircraft sandwich panels, 6th European LS-DYNA Users Conference, Gothenburg, Sweden, 2007.
  • S. Heimbs, P. Middendorf, C. Hampf, F. Hähnel, and K. Wolf, Aircraft sandwich structures with folded core under impact load, Ferreira AJM, 8th International Conference on Sandwich Structures, Porto, Portugal, 2008.
  • S. Heimbs, E. Baranger, M. Klaus, S. Kilchert, and S. Fischer, Sandwich structures with folded core: Mechanical modeling and impact simulations, SEICO 09 SAMPE Europe 30th International Jubilee Conference and Forum, Paris, France, 2009.
  • S. Heimbs, Foldcore sandwich structures and their impact behaviour: An overview. In: S. Abrate, B. Castanié, and Y. Rajapakse (eds.), Dynamic Failure of Composite and Sandwich Structures. Solid Mechanics and Its Applications, Vol. 192, Springer, Dordrecht, 491–544, 2013. DOI: 10.1007/978-94-007-5329-7_11.
  • S. Kilchert, Nonlinear finite element modelling of degradation and failure in folded core composite sandwich structures, D.Sc Thesis, University of Stuttgart, Germany, 2013.
  • X. Zhou, H. Wanga, and Z. Youb, Mechanical properties of Miura-based folded cores under quasi-static loads, Thin-Walled Struct., vol. 82, pp. 296–310, 2014. DOI: 10.1016/j.tws.2014.05.001.
  • K. Lundin, The 9 biggest packaging design trends of 2020. Crowdspring homepage, 2020, Accessed March 23, 2020, Available from https://www.crowdspring.com/blog/packaging-design-trends-2020/
  • M. J. Kirwan, Handbook of Paper and Paperboard Packaging Technology, John Wiley & Sons, Chichester, West Sussex, UK, 2012. DOI: 10.1002/9781118470930.
  • L. Aktay, A. F. Johnson, and B.-H. Kröplin, Numerical modelling of honeycomb core crush behaviour, Eng. Fract. Mech., vol. 75, no. 9, pp. 2616–2630, 2008. DOI: 10.1016/j.engfracmech.2007.03.008.
  • S. Heimbs, P. Middendorf, S. Kilchert, A. F. Johnson, and M. Maier, Experimental and numerical analysis of composite folded sandwich core structures under compression, Appl. Compos. Mater., vol. 14, no. 5–6, pp. 363–377, 2007. DOI: 10.1007/s10443-008-9051-9.
  • S. Fischer, K. Drechsler, B. Kilchert, and A. Johnson, Mechanical tests for foldcore base material properties, Compos.: Part A, vol. 40, no. 12, pp. 1941–1952, 2009. DOI: 10.1016/j.compositesa.2009.03.005.
  • C. H. Yoo and S. C. Lee, Chpt 8. Buckling of Plate Elements, In: Stability of Structures - Principles and Applications, Elsevier, pp. 373–434, 2011. DOI: 10.1016/b978-0-12-385122-2.10008-9.
  • G. A. Baum, D. C. Brennan, and C. C. Habeger, Orthotropic elastic constants of paper, Tappi, vol. 64, pp. 97–101, 1981.
  • C. J. Biermann, Chapter 7 - Paper and its properties. In: Handbook of Pulping and Papermaking, 2nd ed., Elsevier, Cambridge, Massachusetts, USA, 1996, pp. 158–189. DOI: 10.1016/B978-0-12-097362-0.X5000-6.
  • S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day Inc., San Francisco, California, USA, 1963.
  • R. Szilard, Theory and Analysis of Plates. Classical and Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1974.
  • G. Lu and T. X. Yu, Energy Absorption of Structures and Materials, Woodhead Publishing, Cambridge, England, 2003.
  • A. Lebée, L. Monasse, and H. Nassar, Fitting surfaces with the Miura tessellation, 7th International Meeting on Origami in Science, Mathematics and Education (7OSME), Oxford, UK, September 2018, p. 811.
  • E. A. Elsayed and B. B. Basily, A continuous folding process for sheet materials, IJMPT, vol. 21, no. 1/2/3, pp. 217–238, 2004. DOI: 10.1504/IJMPT.2004.004753.
  • W. Szewczyk, Determination of Poisson's ratio in the plane of the paper, Fibres Textiles Eastern Europe, vol. 16, no. 4, pp. 117–120, 2008.
  • S. Fischer, S. Heimbs, S. Kilchert, M. Klaus, and C. Cluzel, Sandwich structures with folded core: Manufacturing and mechanical behavior, SAMPE Europe International Conference (SEICO-09), Paris, France, 2009.
  • L. Göttsching and H. L. Baumgarten, Triaxial deformation of paper under tensile load. In: F. Bolam (ed.), The Fundamental Properties of Paper Related to Its Uses, Trans. Vth Fund. Res. Symp., Cambridge, 1973, pp. 227–249.
  • M. W. Johnson and T. J. Urbanik, A nonlinear theory for elastic plates with application to characterizing paper properties, J Appl Mech., vol. 51, no. 1, pp. 146–152, 1984. DOI: 10.1115/1.3167559.
  • B. Thiria and M. Adda-Bedia, Relaxation mechanisms in the unfolding of thin sheets, Phys. Rev. Lett., vol. 107, no. 2, pp. 025506, 2011. DOI: 10.1103/PhysRevLett.107.025506.
  • F. Muhs, S. Thissen, and P. Middendorf, Virtual process chain for optimization of sandwich foldcores under flatwise compression, Thin-Walled Struct., vol. 157, pp. 107121, 2020. DOI: 10.1016/j.tws.2020.107121.