833
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Creep life prediction for a nickel-based single crystal turbine blade

, , , , , & show all
Pages 6039-6052 | Received 26 Jun 2021, Accepted 20 Aug 2021, Published online: 12 Sep 2021

Reference

  • P. Caron, and T. Khan, Evolution of Ni-based superalloys for single crystal gas turbine blade applications, Aerosp. Sci. Technol., vol. 3, no. 8, pp. 513–523, 1999. DOI: 10.1016/S1270-9638(99)00108-X.
  • Y. Ma, and G. Cheng, Forming property and broaching error prediction of a forged nickel-based superalloy turbine disc, Aerosp. Sci. Technol., vol. 62, pp. 55–64, 2017. DOI: 10.1016/j.ast.2016.09.022.
  • X. Liu, R. Wang, D. Hu, J. Mao, and G. Chen, Reliability-based design optimization approach for compressor disc with multiple correlated failure modes, Aerosp. Sci. Technol., vol. 110, pp. 106493, 2021. DOI: 10.1016/j.ast.2021.106493.
  • L.-K. Song, G.-C. Bai, and C.-W. Fei, Dynamic surrogate modeling approach for probabilistic creep-fatigue life evaluation of turbine disks, Aerosp. Sci. Technol., vol. 95, pp. 105439, 2019. DOI: 10.1016/j.ast.2019.105439.
  • H.-F. Gao, E. Zio, A. Wang, G.-C. Bai, and C.-W. Fei, Probabilistic-based combined high and low cycle fatigue assessment for turbine blades using a substructure-based kriging surrogate model, Aerosp. Sci. Technol., vol. 104, pp. 105957, 2020. DOI: 10.1016/j.ast.2020.105957.
  • L. Han, et al., Probability-based service safety life prediction approach of raw and treated turbine blades regarding combined cycle fatigue, Aerosp. Sci. Technol., vol. 110, pp. 106513, 2021. DOI: 10.1016/j.ast.2021.106513.
  • C. Lu, C.-W. Fei, Y.-W. Feng, Y.-J. Zhao, X.-W. Dong, and Y.-S. Choy, Probabilistic analyses of structural dynamic response with modified Kriging-based moving extremum framework, Eng. Fail. Anal., vol. 125, pp. 105398, 2021. DOI: 10.1016/j.engfailanal.2021.105398.
  • L.-K. Song, C.-W. Fei, J. Wen, and G.-C. Bai, Multi-objective reliability-based design optimization approach of complex structure with multi-failure modes, Aerosp. Sci. Technol., vol. 64, pp. 52–62, 2017. DOI: 10.1016/j.ast.2017.01.018.
  • Z. F. Yue, Z. Z. Lu, and C. Q. Zheng, The creep-damage constitutive and life predictive model for nickel-base single-crystal superalloys, MMTA., vol. 26, no. 7, pp. 1815–1821, 1995. DOI: 10.1007/BF02670769.
  • J. H. Konish, Simplified estimation of creep-rupture strength for notched tensile specimens of austenitic stainless steels, J. Pressure Vessel Technol., vol. 110, no. 3, pp. 314–321, 1988. DOI: 10.1115/1.3265605.
  • A. Manonukul, F. Dunne, D. Knowles, and S. Williams, Multiaxial creep and cyclic plasticity in nickel-base superalloy C263, Int. J. Plast., vol. 21, no. 1, pp. 1–20, 2005. DOI: 10.1016/j.ijplas.2003.12.005.
  • D. Liu, Study on the Creep Rupture Mechanism and Life Prediction of Nickel Base Single Crystal under Multiaxial Stress State, Northwestern Polytechnical University, Xi'an, Shaanxi, China, 2015.
  • C. Zhang, et al., Creep residual life prediction of a nickel-based single crystal superalloy based on microstructure evolution, Mater. Sci. Eng. A., vol. 756, pp. 108–118, 2019. DOI: 10.1016/j.msea.2019.03.132.
  • W. Gan, H. Gao, and Z. Wen, Based on damage caused by microstructure evolution during long-term thermal exposure to analyze and predict creep behavior of Ni-based single crystal superalloy, AIP Adv., vol. 10, no. 8, pp. 085301, 2020. DOI: 10.1063/5.0018611.
  • Z. Wen, D. Zhang, S. Li, Z. Yue, and J. Gao, Anisotropic creep damage and fracture mechanism of nickel-base single crystal superalloy under multiaxial stress, J. Alloy. Compd., vol. 692, pp. 301–312, 2017. DOI: 10.1016/j.jallcom.2016.09.052.
  • A. Q. Wang, L. Liu, Z. X. Wen, Z. W. Li, and Z. F. Yue, The influence of dwell time on low cycle fatigue behavior of Ni-base superalloy IC10, High Temp. Mater. Process., vol. 36, no. 8, pp. 795–803, 2017. DOI: 10.1515/htmp-2016-0019.
  • C. J. Zhang, W. B. Hu, C. Y. Liu, Y. S. Zhao, J. Shang, and Z. X. Wen, Effects of low- to medium-angle grain boundaries on creep properties of superalloy, Mater. Sci. Technol., vol. 34, no. 10, pp. 1176–1187, 2018. DOI: 10.1080/02670836.2018.1428405.
  • G. A. Webster, K. M. Nikbin, and F. Biglari, Finite element analysis of notched bar skeletal point stresses and dimension changes due to creep, Fat. Frac. Eng. Mat. Struct., vol. 27, no. 4, pp. 297–303, 2004. DOI: 10.1111/j.1460-2695.2004.00704.x.
  • G. A. Webster, et al., A Code of Practice for conducting notched bar creep tests and for interpreting the data, Fat. Frac. Eng. Mat. Struct., vol. 27, no. 4, pp. 319–342, 2004. DOI: 10.1111/j.1460-2695.2004.00765.x.
  • D. S. Liu, D. X. Zhang, J. W. Liang, Z. X. Wen, and Z. F. Yue, Prediction of creep rupture life of a V-notched bar in DD6 Ni-based single crystal superalloy, Mater. Sci. Eng. A., vol. 615, pp. 14–21, 2014. DOI: 10.1016/j.msea.2014.07.006.
  • FernandoZ. Sierra, Diganta Narzary, Candelario Bolaina, JeChin Han, Janusz Kubiak, and Jesús Nebradt, Heat transfer and thermal mechanical stress distributions in gas turbine blades, ASME Turbo Expo: Power for Land, Sea, & Air., pp. 115–126, 2009. DOI: 10.1115/GT2009-59194.
  • W. D. York, and J. H. Leylek, Three-Dimensional conjugate heat transfer simulation of an internally-cooled gas turbine vane, ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference., pp. 351–360., 2003. DOI: 10.1115/GT2003-38551.
  • L. Gu, A. Zemp, and R. S. Abhari, Numerical study of the heat transfer effect on a centrifugal compressor performance, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 229, no. 12, pp. 2207–2220, 2015. DOI: 10.1177/0954406214557687.
  • Q. M. Y. Z. F. Yue, Z. X. Wen, and N. X. Hou, Structural Strength and Life Design of Single Crystal Superalloy Turbine Blade, Science Press, Beijing, 2007.
  • C. Fei, H. Liu, RPatricia Liem, Y. Choy, and L. Han, Hierarchical model updating strategy of complex assembled structures with uncorrelated dynamic modes, Chin. J. Aeronaut., 2021. DOI: 10.1016/j.cja.2021.03.023.
  • L. Han, Y. Wang, Y. Zhang, C. Lu, C. Fei, and Y. Zhao, Competitive cracking behavior and microscopic mechanism of Ni-based superalloy blade respecting accelerated CCF failure, Int. J. Fatigue., vol. 150, pp. 106306, 2021. DOI: 10.1016/j.ijfatigue.2021.106306.
  • Christos Skamniotis, and AlanCF. Cocks, Cocks, 2D and 3D thermoelastic phenomena in double wall transpiration cooling systems for gas turbine blades and hypersonic flight, Aerosp. Sci. Technol., vol. 113, pp. 106610, 2021. DOI: 10.1016/j.ast.2021.106610.
  • C. Wang, D. Shi, X. Yang, S. Li, and C. Dong, An improved viscoplastic constitutive model and its application to creep behavior of turbine blade, Mater. Sci. Eng. A., vol. 707, pp. 344–355, 2017. DOI: 10.1016/j.msea.2017.09.067.
  • R. Hill, Generalized constitutive relations for incremental deformation of metal crystals by multislip, J.Mech. Phys. Solids., vol. 14, no. 2, pp. 95–102, 1966. DOI: 10.1016/0022-5096(66)90040-8.
  • R. Hill, and J. R. Rice, Constitutive analysis of elastic-plastic crystals at arbitrary strain, J. Mech. Phys. Solids., vol. 20, no. 6, pp. 401–413, 1972. DOI: 10.1016/0022-5096(72)90017-8.
  • N. X. Hou, Z. X. Wen, and Z. F. Yue, Creep behavior of single crystal superalloy specimen under temperature gradient condition, Mater. Sci. Eng. A., vol. 510-511, pp. 42–45, 2009. DOI: 10.1016/j.msea.2008.04.105.
  • Q. M. Yu, Z. F. Yue, and Z. X. Wen, Creep damage evolution in a modeling specimen of nickel-based single crystal superalloys air-cooled blades, Mater. Ence Eng. A Struct. Mater. Prop. Microstruct. Process., vol. 477, no. 1-2, pp. 319–327, 2008. DOI: 10.1016/j.msea.2007.05.080.
  • M. E. Kassner, and T. A. Hayes, Creep cavitation in metals, Int. J. Plast., vol. 19, no. 10, pp. 1715–1748, 2003. DOI: 10.1016/S0749-6419(02)00111-0.
  • L. Kachanov, and D. Krajcinovic, Introduction to Continuum Damage Mechanics, J. Appl. Mech. Trans. ASME, vol. 54, no. 2, pp. 481–481, 1987. DOI: 10.1115/1.3173053.
  • Z. Wen, Y. Zhang, Z. Li, and Z. Yue, Equivalent and simplification of nickel-based single crystal plates with film cooling holes, Aerosp. Sci. Technol., vol. 82-83, pp. 119–139, 2018. DOI: 10.1016/j.ast.2018.09.011.
  • Editorial committee. China Aeronautical Materials Handbook, (Vo. 2), Standards Press of China, Beijing, 2002.
  • F. Menter, Improved two-equation k-omega turbulence models for aerodynamic flows, STI/Recon Technical Report N., vol. 93, NASA Ames Research Center Moffett Field, CA, United States, 1992.
  • F. Menter, Two-Equation Eddy-Viscosity Transport Turbulence Model for Engineering Applications, AIAA J., vol. 32, no. 8, pp. 1598–1605, 1994. DOI: 10.2514/3.12149.
  • K. M. Menter F R, and R. Langtry, Ten years of industrial experience with the SST turbulence model, Turbulence Heat Mass Trans., vol. 4, pp. 625–632, 2003.
  • H. Pei, Y. Zhang, Z. Wen, J. Wang, X. Ai, and Z. Yue, Crack initiation behavior of a Ni-based SX superalloy under transient thermal stress, Mater. Sci. Eng. A., vol. 754, pp. 581–592, 2019. DOI: 10.1016/j.msea.2019.03.112.
  • F. D. Vanna, F. Picano, and E. Benini, A sharp-interface immersed boundary method for moving objects in compressible viscous flows, Comput. Fluids., vol. 201, pp. 104415, 2020. DOI: 10.1016/j.compfluid.2019.104415.
  • S. A. Faghidian, A smoothed inverse eigenstrain method for reconstruction of the regularized residual fields, Int. J. Solids Struct., vol. 51, no. 25-26, pp. 4427–4434, 2014. DOI: 10.1016/j.ijsolstr.2014.09.012.
  • S. A. Faghidian, Inverse determination of the regularized residual stress and eigenstrain fields due to surface peening, J. Strain Anal. Eng. Des., vol. 50, no. 2, pp. 84–91, 2015. DOI: 10.1177/0309324714558326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.