214
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Effects of cellulose nanofiber content on impact properties of carbon fiber reinforced epoxy composites with the cellulose nanofiber dispersion layer

ORCID Icon, , , , &
Pages 6087-6095 | Received 12 Jul 2021, Accepted 21 Aug 2021, Published online: 16 Sep 2021

References

  • E. Maccaferri et al., Rubbery nanofibrous interleaves enhance fracture toughness and damping of CFRP laminates, Mater. Des., vol. 195, pp. 109049, 2020. DOI: 10.1016/j.matdes.2020.109049.
  • J.H. Eun, D.H. Kim, and J.S. Lee, Effect of low melting temperature polyamide fiber-interlaced carbon fiber braid fabric on the mechanical performance and fracture toughness of CFRP laminates, Composites Part A, vol. 137, pp. 105987, 2020. DOI: 10.1016/j.compositesa.2020.105987.
  • H. Kishi, M. Kuwata, S. Matsuda, T. Asami, and A. Murakami, Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites, Compos. Sci. Technol., vol. 64, no. 16, pp. 2517–2523, 2004. DOI: 10.1016/j.compscitech.2004.05.006.
  • E. Stelldinger, A. Kühhorn, and M. Kober, Experimental evaluation of the low-velocity impact damage resistance of CFRP tubes with integrated rubber layer, Compos. Struct., vol. 139, pp. 30–35, 2016. DOI: 10.1016/j.compstruct.2015.11.069.
  • S. Cai, Y. Li, Y. Liu, and W. Mai, Effect of electrospun polysulfone/cellulose nanocrystals interleaves on the interlaminar fracture toughness of carbon fiber/epoxy composites, Compos. Sci. Technol., vol. 181, pp. 107673, 2019. DOI: 10.1016/j.compscitech.2019.05.030.
  • H. Kurita, Y. Xie, K. Katabira, R. Honda, and F. Narita, The insert effect of cellulose nanofiber layer on glass fiber‐reinforced plastic laminates and their flexural properties, Mater. Des. Process. Commun., vol. 1, no. 3, pp. e58, 2019. DOI: 10.1002/mdp2.58.
  • V. Carvelli, A. Betti, and T. Fujii, Fatigue and Izod impact performance of carbon plain weave textile reinforced epoxy modified with cellulose microfibrils and rubber nanoparticles, Composites Part A, vol. 84, pp. 26–35, 2016. DOI: 10.1016/j.compositesa.2016.01.005.
  • K. Oksman et al., Review of the recent developments in cellulose nanocomposite processing, Composites Part A: Appl. Sci. Manuf., vol. 83, pp. 2–18, 2016. DOI: 10.1016/j.compositesa.2015.10.041.
  • K. Ramamoorthy et. al., Performance of biocomposites from surface modified regenerated cellulose fibers and lactic acid thermoset bioresin, Cellulose, vol. 22, no. 4, pp. 2507–2528, 2015. DOI: 10.1007/s10570-015-0643-x.
  • Y. Shao, T. Yashiro, K. Okubo, and T. Fujii, Effect of cellulose nanofiber on fatigue performance of carbon fiber fabric composites, Composites Part A, vol. 76, pp. 244–254, 2015. DOI: 10.1016/j.compositesa.2015.05.033.
  • J.M. Raquez, Y. Habibi, M. Murariu, and P. Dubois, Polylactide (PLA)-based nanocomposites, Prog. Polym. Sci., vol. 38, no. 10–11, pp. 1504–1542, 2013. DOI: 10.1016/j.progpolymsci.2013.05.014.
  • M.H. Gabr, M.A. Elrahman, K. Okubo, and T. Fujii, Effect of microfibrillated cellulose on mechanical properties of plain-woven CFRP reinforced epoxy, Compos. Struct., vol. 92, no. 9, pp. 1999–2006, 2010. DOI: 10.1016/j.compstruct.2009.12.009.
  • A. Isogai, Emerging nanocellulose technologies: recent developments, Adv. Mater., vol. 33, no. 28, pp. e2000630, 2021. DOI: 10.1002/adma.202000630.
  • P. Dhar and V. Katiyar, 3. Benchmarking nanocellulose production: scale-up strategies and life-cycle assessment. In: Cellulose Nanocrystals, De Gruyter, 2020, pp. 49–80.
  • K. Katagiri et al., Enhancement of the bending strength of I-shaped cross-sectional beam of CFRP by dispersing cellulose nanofibers without hydrophobic treatment on the surface, Mech. Adv. Mater. Struct., vol. 28, no. 11, pp. 1089–1097, 2021. DOI: 10.1080/15376494.2019.1633710.
  • K. Katagiri et al., The bending properties of CFRP I-shaped cross-sectional beam with dispersing cellulose nanofibers on the surface, Proceedings of the American Society for Composites—34th Technical Conference, pp. 31302, 2019.
  • K. Katagiri et al., Enhancement of mechanical properties of CFRP manufactured by using electro-activated deposition resin molding method with the application of CNF without hydrophobic treatment, Compos. Sci. Technol., vol. 169, pp. 203–208, 2019. DOI: 10.1016/j.compscitech.2018.10.030.
  • K. Katagiri et al., Enhancement of the mechanical properties of the CFRP by cellulose nanofiber sheets using the electro-activated deposition resin molding method, Composites Part A: Appl. Sci. Manuf., vol. 123, pp. 320–326, 2019. DOI: 10.1016/j.compositesa.2019.05.022.
  • K. Katagiri et al., Enhancement method of CFRP with the non-hydrophobized cellulose nanofibers using aqueous electrodeposition solution, Mech. Adv. Mater. Struct., pp. 1–8, 2021.
  • K. Katagiri et al., Enhancement of impact properties of CFRP by inserting the non-hydrophobized cellulose nanofiber dispersion layer using an aqueous solution of epoxy resin, Mech. Adv. Mater. Struct., pp. 1954270, 2021. DOI: 10.1080/15376494.2021.1954270.
  • A. Dorigato and A. Pegoretti, Flexural and impact behaviour of carbon/basalt fibers hybrid laminates, J. Compos. Mater., vol. 48, no. 9, pp. 1121–1130, 2014. DOI: 10.1177/0021998313482158.
  • M. Kuhtz et al., An experimental study on the bending response of multi-layered fibre–metal–laminates, J. Compos. Mater., vol. 53, no. 18, pp. 2579–2591, 2019. DOI: 10.1177/0021998319835595.
  • I. Murakami, Electrolyzed activate insulation electro coating system “INSULEED”, Techno-cosmos., vol. 16, pp. 72–73, 2003.
  • H. Sakamoto, Environment friendly electrolyzed activate deposition material with a high electric insulation, J. Oleo Sci., vol. 5, no. 10, pp. 489–496, 2005. (in Japanese). DOI: 10.5650/oleoscience.5.489.
  • R. Murakami, History and principles for electrodeposition coating, J. Surf. Finish. Soc. Jpn., vol. 53, no. 5, pp. 288–292, 2002. (in Japanese). DOI: 10.4139/sfj.53.288.
  • K. Katagiri et al., Manufacturing method of the heat-storable carbon fiber reinforced plastics with applying trans-1,4-polybutadiene by using cellulose nanofibers and electrodeposition solution, J. Storage. Mater., vol. 31, pp. 101636, 2020. DOI: 10.1016/j.est.2020.101636.
  • K. Katagiri et al., Fabrication of heat-storable CFRP by incorporating trans-1,4-polybutadiene with the application of the electrodeposition resin molding method, J. Storage. Mater., vol. 26, pp. 100980, 2019. DOI: 10.1016/j.est.2019.100980.
  • ASTM D790-17 Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, 2017.
  • S. Timoshenko et al., Theory of Elasticity, 3rd ed., McGraw-Hill Book Company, London, 1970.
  • ISO 179-2 Plastics – Determination of Charpy impact properties – Part 2: Instrumented impact test, 2020.
  • A. Fernandez-Canteli et al., Dynamic fracture toughness measurements in composites by instrumented Charpy testing: influence of aging, Compos. Sci. Technol., vol. 62, no. 10–11, pp. 1315–1325, 2002. DOI: 10.1016/S0266-3538(02)00074-X.
  • A. Pegoretti et al., Experimental optimization of the impact energy absorption of epoxy–carbon laminates through controlled delamination, Compos. Sci. Technol., vol. 68, no. 13, pp. 2653–2662, 2008. DOI: 10.1016/j.compscitech.2008.04.036.
  • A.B. Reising, R.J. Moon, and J.P. Youngblood, Effect of particle alignment on mechanical properties of neat cellulose nanocrystal films, J. Sci. Technol. Forest Prod. Process., vol. 2, no. 6, pp. 32–41, 2012.
  • J.M. Lee et al., Prediction of bending stiffness for laminated CFRP and its application to manufacturing of roof reinforcement, Adv. Mech. Eng., vol. 6, pp. 404176, 2014. DOI: 10.1155/2014/404176.
  • K. Yang et al., Integrating tough Antheraea pernyi silk and strong carbon fibres for impact-critical structural composites, Nat. Commun., vol. 10, no. 1, pp. 3786, 2019. DOI: 10.1038/s41467-019-11520-2.
  • M. Selezneva et al., The brittle-to-ductile transition in tensile and impact behavior of hybrid carbon fibre/self-reinforced polypropylene composites, Composites Part A, vol. 109, pp. 20–30, 2018. DOI: 10.1016/j.compositesa.2018.02.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.