333
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Carrera unified formulation (CUF) for the micropolar plates and shells. III. Classical models

ORCID Icon & ORCID Icon
Pages 6336-6360 | Received 27 Jul 2021, Accepted 30 Aug 2021, Published online: 20 Dec 2021

References

  • A.N. Guz and J.J. Rushchitsky, Short Introduction to Mechanics of Nanocomposites,. Scientific & Academic Publishing, USA, p. 290, 2013.
  • E. Cosserat and F. Cosserat, Théorie des corps déformables. A. Hermann et Fils, Paris, France, p. 242, 1909. (English translation by D.H. Delphenich available at http://www.uni-due.de/∼hm0014/Cosseratfiles/Cosserat09eng.pdf).
  • A.C. Eringen, Microcontinuum Field Theories I. Foundations and Solids, Springer, New York, NY, p. 336, 1999.
  • A.C. Eringen, Microcontinuum Field Theories II. Fluent Media, Springer, New York, NY, p. 342, 2001.
  • W. Nowacki, Theory of Axymmetric Elasticity, Pergamon Press, New York, NY, p. 390, 1986.
  • C. Truesdell, and R. Toupin, The classical field theories. In: S. Flügge (ed.), Handbuch der Physik, Springer, Berlin, vol. III/1, p. 226–793, 1960.
  • V.A. Eremeyev, L.P. Lebedev, and H. Altenbach, Foundations of Micropolar Mechanics, Springer, New York, NY, p. 144, 2013.
  • G.A. Maugin and A.V. Metrikine (eds.), Mechanics of Generalized Continua: One Hundred Years after the Cosserats. Springer, New York, NY, 2010.
  • J. Altenbach, H. Altenbach, and V.A. Eremeyev, On generalized Cosserat-type theories of plates and shells. A short review and bibliography, Arch. Appl. Mech., vol. 80, no. 1, pp. 73–92, 2010. DOI: 10.1007/s00419-009-0365-3.
  • S. Hassanpour and G.R. Heppler, Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations, Mathematics and Mechanics of Solids., vol. 22, no. 2, pp. 224–242, 2017. DOI: 10.1177/1081286515581183.
  • J.L. Ericksen and C. Truesdell, Exact theory of stress and strain in rods and shells, Arch. Rational Mech. Anal., vol. 1, no. 1, pp. 295–323, 1957. DOI: 10.1007/BF00298012.
  • V.V. Zozulya, Higher order couple stress theory of plates and shells, Z Angew. Math. Mech., vol. 98, no. 10, pp. 1834–1863, 2018. DOI: 10.1002/zamm.201800022.
  • E. Carrera and V.V. Zozulya, Carrera unified formulation (CUF) for the micropolar beams: Analytical solutions, Mech. Adv. Mater. Struct., pp. 25, 2019. DOI: 10.1080/15376494.2019.1578013.
  • E. Carrera and V.V. Zozulya, Carrera unified formulation (CUF) for the micropolar plates and shells. I. Higher order theory, Mech. Adv. Mater. Struct., pp. 23, 2020. DOI: 10.1080/15376494.2020.1793241.
  • E. Carrera and V.V. Zozulya, Carrera unified formulation (CUF) for the micropolar plates and shells. II. Complete linear expansion case, Mech. Adv. Mater. Struct., pp. 21, 2020. DOI: 10.1080/15376494.2020.1793242.
  • E. Carrera and V.V. Zozulya, Carrera unified formulation for the micropolar plates, Mech. Adv. Mater. Struct., pp. 25, 2021. DOI: 10.1080/15376494.2021.1889726.
  • E. Carrera and V.V. Zozulya, Closed-form solution for the micropolar plates: Carrera unified formulation (CUF) approach, Arch. Appl. Mech., vol. 91, no. 1, pp. 91–116, 2021. DOI: 10.1007/s00419-020-01756-6.
  • A.C. Eringen, Theory of micropolar plates, J. Appl. Math. Phys., vol. 18, no. 1, pp. 12–30, 1967. DOI: 10.1007/BF01593891.
  • R. Kvasov and L. Steinberg, Numerical modeling of bending of micropolar plates, Thin-Walled Struct., vol. 69, pp. 67–78, 2013. DOI: 10.1016/j.tws.2013.04.001.
  • S.H. Sargsyan, Mathematical model of micropolar elastic thin plates and their strength and stiffness characteristics, J. Appl. Mech. Tech. Phys., vol. 53, no. 2, pp. 275–282, 2012.
  • S. Shaw, Bending of a thin rectangular isotropic plate: a Cosserat elasticity analysis, Compos. Mech. Comput. Appl., vol. 8, no. 4, pp. 299–314, 2017.
  • L. Steinberg, Deformation of micropolar plates of moderate thickness, Int. J. Appl. Math. Mech., vol. 6, no. 17, pp. 1–24, 2010.
  • L. Steinberg and R. Kvasov, Enhanced mathematical model for Cosserat plate bending, Thin-Walled Struct., vol. 63, pp. 51–62, 2013. DOI: 10.1016/j.tws.2012.10.003.
  • S.A. Ambartsumian, The Micropolar Theory of Shells and Plates. Springer Nature Switzerland AG, Cham, Switzerland, p. 187, 2021.
  • I.N. Vekua, Shell Theory, General Methods of Construction, Pitman Advanced Pub. Program, Boston, MA, p. 287, 1986.
  • V.V. Zozulya, Micropolar curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models, Curved Layered Struct., vol. 4, no. 1, pp. 104–118, 2017. DOI: 10.1515/cls-2017-0008.
  • V.V. Zozulya, Couple stress theory of curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models, Curved Layered Struct., vol. 4, no. 1, pp. 119–132, 2017. DOI: 10.1515/cls-2017-0009.
  • V.V. Zozulya, Higher order theory of micropolar plates and shells, Z Angew. Math. Mech., vol. 98, no. 6, pp. 886–918, 2018. DOI: 10.1002/zamm.201700317.
  • V.V. Zozulya, Higher order theory of micropolar curved rods. In: H. Altenbach and A. Öchsner (eds.), Encyclopedia of Continuum Mechanics. Springer, Berlin, Germany, p. 1–11, 2018.
  • E. Carrera, A class of two-dimensional theories for anisotropic multilayered plates analysis. In: Atti Della Accademia Delle Scienze di Torino. Classe di Scienze Fisiche Matematiche e Naturali, vol. 19-20, pp. 1–39, 1995.
  • E. Carrera, Multilayered shell theories that account for a layer-wise mixed description. Part I: Governing equations, AIAA J., vol. 37, no. 9, pp. 1107–1116, 1999. DOI: 10.2514/3.14295.
  • E. Carrera, Multilayered shell theories that account for a layer-wise mixed description. Part II: Numerical evaluations, AIAA J., vol. 37, no. 9, pp. 1117–1124, 1999. DOI: 10.2514/3.14296.
  • E. Carrera, Developments, ideas and evaluations based upon the Reissner's mixed variational theorem in the modeling of multilayered plates and shells, Appl Mech Rev., vol. 54, no. 4, pp. 301–329, 2001. DOI: 10.1115/1.1385512.
  • E. Carrera, Theories and finite elements for multilayered plates and shells, ARCO., vol. 9, no. 2, pp. 87–140, 2002. DOI: 10.1007/BF02736649.
  • E. Carrera, Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking, ARCO., vol. 10, no. 3, pp. 215–296, 2003. DOI: 10.1007/BF02736224.
  • E. Carrera, S. Brischetto, and P. Nali, Plates and Shells for Smart Structures. Classical and Advanced Theories for Modeling and Analysis, John Wiley & Sons, Ltd., New Delhi, India, p. 316, 2011.
  • E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino, Finite Element Analysis of Structures through Unified Formulation, John Wiley & Sons, Ltd., New Delhi, India, 2014.
  • K. Washizu, Variational Methods in Elasticity and Plasticity. 3rd ed., Pergamon Press, New York, NY, p. 630, 1982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.