136
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Skin depth, optical density, electron-phonon interaction, steepness parameter, band tail width, carriers transitions and dissipation factors in Cu-Co bilayer films

, &
Pages 6634-6647 | Received 25 Dec 2020, Accepted 17 Sep 2021, Published online: 16 Oct 2021

References

  • M. M. Rahman, H. A. Miran, Z. T. Jiang, M. Altarawneh, L. S. Chuah, H. L. Lee, A. Amri, N. Mondinos, and B. Z. Dlugogorski, Investigation of the post-annealing electromagnetic response of Cu–Co oxide coatings via optical measurement and computational modelling, RSC Adv., vol. 7, no. 27, pp. 16826–16835, 2017. DOI: 10.1039/C6RA25626K.
  • E. Proshkina, M. Shaposhnikov, and A. Moskalev, Genome-protecting compounds as potential geroprotectors, Int. J. Mol. Sci., vol. 21, no. 12, pp. 4484, 2020. DOI: 10.3390/ijms21124484.
  • M. Bhagiyalakshmi, P. Hemalatha, M. Ganesh, M. M. Peng, and H. T. Jang, Synthesis of copper exchanged heteropolyacids supported on MCM-48 and its application for CO2 adsorption, J. Ind. Eng. Chem., vol. 17, no. 3, pp. 628–632, 2011. DOI: 10.1016/j.jiec.2011.05.010.
  • A. Amri, Z. T. Jiang, P. A. Bahri, C. Y. Yin, X. Zhao, Z. Xie, X. Duan, H. Widjaja, M. M. Rahman, and T. Pryor, Surface electronic structure and mechanical characteristics of copper–cobalt oxide thin film coatings: soft x-ray synchrotron radiation spectroscopic analyses and modeling, J. Phys. Chem. C., vol. 117, no. 32, pp. 16457–16467, 2013. DOI: 10.1021/jp404841m.
  • Z. Y. Tian, H. Vieker, P. M. Kouotou, and A. Beyer, In situ characterization of Cu-Co oxides for catalytic application, Faraday Discuss., vol. 177, pp. 249–262, 20154. DOI: 10.1039/c4fd00192c.
  • F. Iacomi, G. Calin, C. Scarlat, M. Irimia, C. Doroftei, M. Dobromir, G. G. Rusu, N. Iftimie, and A. V. Sandu, Functional properties of nickel cobalt oxide thin films, Thin Solid Films., vol. 520, no. 1, pp. 651–655, 2011. DOI: 10.1016/j.tsf.2011.08.067.
  • J. E. Jeronsia, L. A. Joseph, M. M. Jaculine, P. A. Vinosha, and S. J. Das, Hydrothermal synthesis of zinc stannate nanoparticles for antibacterial applications, J. Taibah Univ. Sci., vol. 10, no. 4, pp. 601–606, 2016. DOI: 10.1016/j.jtusci.2015.12.003.
  • A. Kraytsberg, and Y. Ein-Eli, A critical review-promises and barriers of conversion electrodes for Li-ion batteries, J. Solid State Electrochem., vol. 21, no. 7, pp. 1907–1923, 2017. DOI: 10.1007/s10008-017-3580-9.
  • A. Roy, P. K. Dutta, and S. Mitra, Advanced sodium storage property in an exfoliated MoO 3 anode: the stability and performance improvement by in situ impedance mapping, J. Mater. Chem. A., vol. 5, no. 38, pp. 20491–20496, 2017. DOI: 10.1039/C7TA05711C.
  • H. Taha, K. Ibrahim, M. M. Rahman, D. J. Henry, C. Y. Yin, J. P. Veder, A. Amri, X. Zhao, and Z. T. Jiang, Sol-gel derived ITO-based bi-layer and tri-layer thin film coatings for organic solar cells applications, Appl. Surf. Sci., vol. 530, pp. 147164, 2020. DOI: 10.1016/j.apsusc.2020.147164.
  • S. Chevalier, L. Combemale, I. Popa, S. Chandra-Ambhorn, W. Chandra-ambhorn, P. Promdirek, and P. Wongpromrat, Development of SOFC Interconnect Stainless Steels, SSP., vol. 300, pp. 135–156, 2020. DOI: 10.4028/www.scientific.net/SSP.300.135.
  • T. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu, and C. C. Hu , A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process , Adv. Mater., vol. 22, no. 3, pp. 347–351, 2010. DOI: 10.1002/adma.200902175.
  • X. Xiao, L. Miao, G. Xu, L. Lu, Z. Su, N. Wang, and S. Tanemura, A facile process to prepare copper oxide thin films as solar selective absorbers, Appl. Surf. Sci., vol. 257, no. 24, pp. 10729–10736, 2011. DOI: 10.1016/j.apsusc.2011.07.088.
  • A. Amri, X. Duan, C. Y. Yin, Z. T. Jiang, M. M. Rahman, and T. Pryor, Solar absorptance of copper–cobalt oxide thin film coatings with nano-size, grain-like morphology: optimization and synchrotron radiation XPS studies, Appl. Surf. Sci., vol. 275, pp. 127–135, 2013. DOI: 10.1016/j.apsusc.2013.01.081.
  • D. Ding, W. Cai, M. Long, H. Wu, and Y. Wu, Optical, structural and thermal characteristics of Cu–CuAl2O4 hybrids deposited in anodic aluminum oxide as selective solar absorber, Sol. Energy Mater. Sol. Cells., vol. 94, no. 10, pp. 1578–1581, 2010. DOI: 10.1016/j.solmat.2010.04.075.
  • C. Li, X. Han, F. Cheng, Y. Hu, C. Chen, and J. Chen, Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis, Nat. Commun., vol. 6, no. 1, pp. 1–8, 2015.
  • J. A. Aguilar-Saavedra, P. Amaral, N. Anjos, J. Carvalho, N. F. Castro, P. Conde Muiño, A. Do Valle Wemans, M. Fiolhais, A. Gomes, R. Gonçalo, and P. Jorge, The ATLAS Collaboration, et al., Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC, Eur. Phys. J. C., vol. 73, no. 3, pp. 1–34, 2013. DOI: 10.1140/epjc/s10052-013-2305-1.
  • T. Cohen-Hyams, W. D. Kaplan, D. Aurbach, Y. S. Cohen, and J. Yahalom, Electrodeposition of granular Cu-Co alloys, J. Electrochem. Soc., vol. 150, no. 1, pp. C28, 2002. DOI: 10.1149/1.1527938.
  • W. Jiang, L. Shen, M. Xu, J. Zhu, and Z. Tian, Roughness, hardness and giant magneto resistance of Cu/Co multilayers prepared by jet electrochemical deposition, Int. J. Electrochem. Sci., vol. 13, pp. 9669–9680, 2018. DOI: 10.20964/2018.10.24.
  • N. Rajasekaran, and S. Mohan, Giant magnetoresistance in electrodeposited films: current status and the influence of parameters, Crit. Rev. Solid State Mater. Sci., vol. 37, no. 3, pp. 158–180, 2012. DOI: 10.1080/10408436.2011.613490.
  • A. Gündel, E. Chassaing, and J. E. Schmidt, In situ magnetization measurements of Cu/Co multilayers during the process of electrodeposition, J. Appl. Phys., vol. 90, no. 10, pp. 5257–5260, 2001. DOI: 10.1063/1.1413233.
  • T. M. de Souza, L. F. de Senna, D. B. Lago, Eletrodeposição de revestimentos de ligasmetálicascontendocobre e cobaltoempregando um eletrólitoambientalmenteamigável. In: Anais do XXII CBECIMAT - CongressoBrasileiro de Engenharia e Ciência dos Materiais, Natal, RN, Brasil., pp. 6840–6851, 2016.
  • W. R. Lee, M. G. Kim, J. R. Choi, J. I. Park, S. J. Ko, S. J. Oh, and J. Cheon, Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles, J. Am. Chem. Soc., vol. 127, no. 46, pp. 16090–16097, 2005. DOI: 10.1021/ja053659j.
  • S. K. Ghosh, T. Bera, C. Saxena, S. Bhattacharya, and G. K. Dey, Effect of pulse plating and additive on phase separation in Cu–Co nano-granular alloys, J. Alloys Compd., vol. 475, no. 1-2, pp. 676–682, 2009. DOI: 10.1016/j.jallcom.2008.07.137.
  • F. L. Silva, J. R. Garcia, V. G. Cruz, A. S. Luna, D. C. Lago, and L. F. Senna, Response surface analysis to evaluate the influence of deposition parameters on the electrodeposition of Cu–Co alloys in citrate medium, J. Appl. Electrochem., vol. 38, no. 12, pp. 1763–1769, 2008. DOI: 10.1007/s10800-008-9630-3.
  • S. Wurster, M. Stückler, L. Weissitsch, T. Müller, and A. Bachmaier, Microstructural changes influencing the magnetoresistive behavior of bulk nanocrystalline materials, Appl. Sci., vol. 10, no. 15, pp. 5094, 2020. DOI: 10.3390/app10155094.
  • T. M. Souza, D. C. Lago, and L. F. Senna, Electrodeposition of Co-rich Cu-Co alloys from sodium tartrate baths using direct (DC) and single pulsed current (SPC), Mat. Res., vol. 22, no. 3, 2019. DOI: 10.1590/1980-5373-mr-2018-0272.
  • L. D. Senna, S. L. Díaz, and L. Sathler, Electrodeposition of copper–zinc alloys in pyrophosphate-based electrolytes, J. Appl. Electrochem., vol. 33, no. 12, pp. 1155–1161, 2003. DOI: 10.1023/B:JACH.0000003756.11862.6e.
  • K. Johannsen, D. Page, and S. Roy, A systematic investigation of current efficiency during brass deposition from a pyrophosphate electrolyte using RDE, RCE, and QCM, Electrochim. Acta., vol. 45, no. 22-23, pp. 3691–3702, 2000. DOI: 10.1016/S0013-4686(00)00461-8.
  • Y. Fujiwara, and H. Enomoto, Electrodeposition of β′‐Brass from Cyanide Baths with Accumulative Underpotential Deposition of Zn, J. Electrochem. Soc., vol. 147, no. 5, pp. 1840, 2000. DOI: 10.1149/1.1393444.
  • L. T. Farias, A. S. Luna, D. C. B. Lago, and L. F. Senna, Influence of cathodic current density and mechanical stirring on the electrodeposition of Cu-Co alloys in citrate bath, Mat. Res., vol. 11, no. 1, pp. 1–9, 2008. DOI: 10.1590/S1516-14392008000100002.
  • T. G. de Lima, B. C. Rocha, A. V. Braga, D. C. do Lago, A. S. Luna, and L. F. Senna, Response surface modeling and voltammetric evaluation of Co-rich Cu–Co alloy coatings obtained from glycine baths, Surf. Coat. Technol., vol. 276, pp. 606–617, 2015. DOI: 10.1016/j.surfcoat.2015.06.008.
  • M. Jung, G. Lee, and J. Choi, Electrochemical plating of Cu-Sn alloy in non-cyanide solution to substitute for Ni undercoating layer, Electrochim. Acta., vol. 241, pp. 229–236, 2017. DOI: 10.1016/j.electacta.2017.04.170.
  • J. R. Garcia, D. C. Lago, and L. F. Senna, Electrodeposition of cobalt rich Zn-Co alloy coatings from citrate bath, Mat. Res., vol. 17, no. 4, pp. 947–957, 2014. DOI: 10.1590/S1516-14392014005000096.
  • A. E. Mohamed, S. M. Rashwan, S. M. Abdel-Wahaab, and M. M. Kamel, Electrodeposition of Co–Cu alloy coatings from glycinate baths, J. Appl. Electrochem., vol. 33, no. 11, pp. 1085–1092, 2003. DOI: 10.1023/A:1026209715687.
  • R. L. Antón, M. L. Fdez-Gubieda, A. Garcıa-Arribas, J. Herreros, and M. Insausti, Preparation and characterisation of Cu–Co heterogeneous alloys by potentiostatic electrodeposition, Mater. Sci. Eng. A., vol. 335, no. 1-2, pp. 94–100, 2002. DOI: 10.1016/S0921-5093(01)01914-1.
  • C. H. Song, Y. Choi, J. Y. Lee, and M. Kim, Electro-magnetic insulating behavior of thin multilayered copper-nickel composite mesh sheet formed by two-step pulse electroplating, Phys. Metals Metallogr., vol. 115, no. 13, pp. 1275–1280, 2014. DOI: 10.1134/S0031918X14130237.
  • V. Dalouji, P. Abbasi, and N. Rahimi, Effect of annealing temperature on photoluminescence spectra, gap states using different models and optical dispersion parameters in copper-doped ZnO films, Mol. Simul., vol. 46, no. 18, pp. 1542–1548, 2020. DOI: 10.1080/08927022.2020.1856839.
  • A. Goktas, and I. H. Mutlu, Structural, optical, and magnetic properties of solution-processed co-doped ZnS thin films, J. Elec. Mater., vol. 45, no. 11, pp. 5709–5720, 2016. DOI: 10.1007/s11664-016-4771-3.
  • A. Goktas, Role of simultaneous substitution of Cu2+ and Mn2+ in ZnS thin films: Defects-induced enhanced room temperature ferromagnetism and photoluminescence, Physica E., vol. 117, no. 113828, pp. 113828, March. DOI: 10.1016/j.physe.2019.113828.
  • S. Ţälu, M. Bramowicz, S. Kulesza, A. Ghaderi, V. Dalouji, S. Solaymani, and Z. Khalaj, Microstructure and micromorphology of Cu/Co nanoparticles: surface texture analysis, Electron. Mater. Lett., vol. 12, no. 5, pp. 580–588, 2016. DOI: 10.1007/s13391-016-6036-y.
  • M. Yeganeh, and M. Saremi, Deposition of Thin Film Copper Nanostructures by Electron Beam Physical Vapor Deposition Technique on SiO 2/p-TYPE Si (100) and Study of its Oxidation Behavior, Int. J. Mod. Phys. B., vol. 25, no. 19, pp. 2567–2574, 2011. DOI: 10.1142/S0217979211101867.
  • H. Jiang, T. J. Klemmer, J. A. Barnard, W. D. Doyle, and E. A. Payzant, Epitaxial growth of Cu (111) films on Si (110) by magnetron sputtering: Orientation and twin growth, Thin Solid Films ., vol. 315, no. 1-2, pp. 13–16, 1998. DOI: 10.1016/S0040-6090(97)00954-1.
  • A. Goktas, A. Tumbul, Z. Aba, A. Kilic, and F. Aslan, Enhancing crystalline/optical quality, and photoluminescence properties of the Na and Sn substituted ZnS thin films for optoelectronic and solar cell applications; a comparative study, Opt. Mater., vol. 107, pp. 110073, 2020. DOI: 10.1016/j.optmat.2020.110073.
  • M. M. Alam, Md. NasrulHaque Mia, R. Hasan, M. Shahinuzzaman, M. K. Islam, Khan. M. Nasir Uddin, Study of structural and morphological properties of vacuum coated copper (Cu) metal thin film, MSA., vol. 06, no. 08, pp. 753–759, 2015. DOI: 10.4236/msa.2015.68077.
  • R. Vahalová, L. Tichý, M. Vlček, and H. Tichá, Far infrared spectra and bonding arrangement in some Ge–Sb–S glasses, Phys. Stat. Sol. (a)., vol. 181, no. 1, pp. 199–209, 2000. DOI: 10.1002/1521-396X(200009)181:1<199::AID-PSSA199>3.0.CO;2-X.
  • A. S. Hassanien, and A. A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films, Superlattices Microstruct., vol. 89, pp. 153–169, 2016. DOI: 10.1016/j.spmi.2015.10.044.
  • N. Rahimi, V. Dalouji, and A. Souri, Studying the optical density, topography, and structural properties of CZO and CAZO thin films at different annealing temperatures, Adv. Ceram. Prog., vol. 6, no. 2, pp. 17–23, 2020.
  • A. S. Hassanien, and A. A. Akl, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50− xSex thin films, J. Alloys Compd., vol. 648, pp. 280–290, 2015. DOI: 10.1016/j.jallcom.2015.06.231.
  • M. Birkholz, Thin Film Analysis by X-Ray Scattering, John Wiley & Sons, 2006.
  • Poortmans J, Arkhipov V, editors. Thin Film Solar Cells: fabrication, Characterization and Applications, John Wiley & Sons, 2006.
  • N. Rahimi, V. Dalouji, and S. Rezaee, Effect of annealing processing on morphology, spectroscopy studies, Urbach disordering energy, and WDD dispersion parameters in Cu-Al doped zinc oxide films, J. Dispersion Sci. Technol, pp. 1–10, 2020. DOI: 10.1080/01932691.2020.1847657.
  • A. Goktas, A. Tumbul, and F. Aslan, A new approach to growth of chemically depositable different ZnS nanostructures, J. Sol-Gel Sci. Technol., vol. 90, no. 3, pp. 487–497, 2019. DOI: 10.1007/s10971-019-04990-9.
  • S. Goudarzi, V. Dalouji, and S. Solaymani , The relation between the average diameter of CNTs on Ni-Cu @ a-C:H catalyst with the optical absorption edge and the optical dispersion parameters, J. Microsc., vol. 282, no. 1, pp. 3–12, 2021. DOI: 10.1111/jmi.12970.
  • S. Ebrahimi, B. Yarmand, and N. Naderi, Effect of the sulfur concentration on the optical band gap energy and Urbach Tail of spray-deposited ZnS films, Adv Ceram Prog., vol. 3, no. 4, pp. 6–12, 2017.
  • S. J. Ikhmayies, and R. N. Ahmad-Bitar, A study of the optical bandgap energy and Urbach tail of spray-deposited CdS: In thin films, J. Mater. Res. Technol., vol. 2, no. 3, pp. 221–227, 2013. DOI: 10.1016/j.jmrt.2013.02.012.
  • J. Singh, Electronic processes in amorphous semiconductors, J. Mater. Sci. Mater. Electron., vol. 14, no. 3, pp. 171–186, 2003. DOI: 10.1023/A:1022310108978.
  • A. Y. Abdel-Latif, H. M. Kotb, M. M. Hafiz, and M. A. Dabban, Influence of heat treatment on the structural, optical and electrical properties of Cd20Sn10Se70 thin films, Mater. Sci. Semicond. Process., vol. 30, pp. 502–512, 2015. DOI: 10.1016/j.mssp.2014.10.027.
  • S. Zaynobidinov, R. Ikramov, and R. Jalalov, Urbach energy and the tails of the density of states in amorphous semiconductors, J. Appl. Spectrosc., vol. 78, no. 2, pp. 223–227, 2011. DOI: 10.1007/s10812-011-9450-9.
  • M. Karimi, M. Rabiee, F. Moztarzadeh, M. Bodaghi, and M. Tahriri, Ammonia-free method for synthesis of CdSnanocrystalline thin films through chemical bath deposition technique, Solid State Commun., vol. 149, no. 41-42, pp. 1765–1768, 2009. DOI: 10.1016/j.ssc.2009.07.027.
  • M. M. El-Desoky, M. M. Abdulrazek, and Y. A. Sharaby, Characterization and optical properties of reduced graphene oxide doped nano-crystalline vanadium pentoxide, Opt. Quant. Electron., vol. 52, no. 6, pp. 1–27, 2020. DOI: 10.1007/s11082-020-02430-5.
  • Goktas A, Tumbul A, Aba Z, Durgun M. Mg doping levels and annealing temperature induced structural, optical and electrical properties of highly c-axis oriented ZnO: Mg thin films and Al/ZnO: Mg/p-Si/Al heterojunction diode, Thin Solid Films., vol. 680, no. 30, pp. 20–30, 2019. DOI: 10.1016/j.tsf.2019.04.024.
  • A. Goktas, F. Aslan, A. Tumbul, and S. H. Gunduz, Tuning of structural, optical and dielectric constants by various transition metal doping in ZnO: TM (TM = Mn, Co, Fe) nanostructured thin films: A comparative study, Ceram. Int., vol. 43, no. 1, pp. 704–713, 2017. DOI: 10.1016/j.ceramint.2016.09.217.
  • S. Goudarzi, and V. Dalouji, The effect of Cu content in MWCNTs synthesized by Ni-Cu@ aC: H catalyst on the optical constants and the optical loss, Optik., vol. 223, pp. 165585, 2020. DOI: 10.1016/j.ijleo.2020.165585.
  • A. Goktas, F. Aslan, and A. Tumbul, Nanostructured Cu-doped ZnS polycrystalline thin films produced by a wet chemical route: the influences of Cu doping and film thickness on the structural, optical and electrical properties, J. Sol-Gel Sci. Technol., vol. 75, no. 1, pp. 45–53, 2015. DOI: 10.1007/s10971-015-3674-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.