497
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of mechanical and thermal characterization of hexagonal boron nitride using a molecular dynamics simulation with the new Dreiding force field

, , , &
Pages 6957-6965 | Received 30 Aug 2021, Accepted 02 Oct 2021, Published online: 26 Oct 2021

References

  • L. Song, et al., Large scale growth and characterization of atomic hexagonal boron nitride layers, Nano Lett., vol. 10, no. 8, pp. 3209–3215, 2010. DOI: 10.1021/nl1022139.
  • K. Zhang, Y. Feng, F. Wang, Z. Yang, and J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications, J. Mater. Chem. C, vol. 5, no. 46, pp. 11992–12022, 2017. DOI: 10.1039/C7TC04300G.
  • G. Cassabois, P. Valvin, and B. Gil, Hexagonal boron nitride is an indirect bandgap semiconductor, Nature Photon., vol. 10, no. 4, pp. 262–267, 2016. DOI: 10.1038/nphoton.2015.277.
  • I. Jo, et al., Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride, Nano Lett., vol. 13, no. 2, pp. 550–554, 2013. DOI: 10.1021/nl304060g.
  • G. Constantinescu, A. Kuc, and T. Heine, Stacking in bulk and bilayer hexagonal boron nitride, Phys. Rev. Lett., vol. 111, no. 3, pp. 036104 2013. DOI: 10.1103/PhysRevLett.111.036104.
  • O. Hod, Graphite and hexagonal boron-nitride have the same interlayer distance. Why? J. Chem. Theory Comput., vol. 8, no. 4, pp. 1360–1369, 2012. DOI: 10.1021/ct200880m.
  • B. Mortazavi, and G. Cuniberti, Mechanical properties of polycrystalline boron-nitride nanosheets, RSC Adv., vol. 4, no. 37, pp. 19137–19143, 2014. DOI: 10.1039/C4RA01103A.
  • J. Jiang, B. Wang, and H. S. Park, Topologically protected interface phonons in two-dimensional nanomaterials: hexagonal boron nitride and silicon carbide, Nanoscale, vol. 10, no. 29, pp. 13913–13923, 2018. DOI: 10.1039/C8NR04314K.
  • B. A. Ravan, and H. Jafari, DFT study on electronic and optical properties of halogen-adsorbed hexagonal boron nitride, Comput. Condens. Matter., vol. 21, pp. e00416, 2019. DOI: 10.1016/j.cocom.2019.e00416.
  • A. Falin, et al., Mechanical properties of atomically thin boron nitride and the role of interlayer interactions, Nat. Commun., vol. 8, pp. 15815 2017. DOI: 10.1038/ncomms15815.
  • Q. Peng, W. Ji, and S. De, Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study, Comput. Mater. Sci., vol. 56, pp. 11–17, 2012. DOI: 10.1016/j.commatsci.2011.12.029.
  • Z. Yang, and Z. Lu, Atomistic simulation of the mechanical behaviors of co-continuous Cu/SiC nanocomposites, Compos. Part B: Eng., vol. 44, no. 1, pp. 453–457, 2013. DOI: 10.1016/j.compositesb.2012.04.010.
  • X. Nie, L. Zhao, S. Deng, Y. Zhang, and Z. Du, How interlayer twist angles affect in-plane and cross-plane thermal conduction of multilayer graphene: A non-equilibrium molecular dynamics study, Int. J. Heat Mass Transf., vol. 137, pp. 161–173, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.130.
  • S. Karimzadeh, B. Safaei, and T. Jen, Predicting phonon scattering and tunable thermal conductivity of 3D pillared graphene and boron nitride heterostructure, Int. J. Heat Mass Transf., vol. 172, pp. 121145, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121145.
  • Q. Cai, et al., High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion, Sci. Adv., vol. 5, no. 6, pp. eaav0129, 2019. DOI: 10.1126/sciadv.aav0129.
  • P. Anees, M. C. Valsakumar, and B. K. Panigrahi , Effect of strong phonon-phonon coupling on the temperature dependent structural stability and frequency shift of 2D hexagonal boron nitride, Phys. Chem. Chem. Phys., vol. 18, no. 4, pp. 2672–2681, 2016. DOI: 10.1039/C5CP06111C.
  • D. G. Pettifor, and I. I. Oleinik, Analytic bond-order potentials beyond Tersoff-Brenner. I. Theory, Phys. Rev. B., vol. 59, no. 13, pp. 8487–8499, 1999. DOI: 10.1103/PhysRevB.59.8487.
  • S. J. Stuart, A. B. Tutein, and J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys., vol. 112, no. 14, pp. 6472–6486, 2000. DOI: 10.1063/1.481208.
  • X. Yang, X. Wang, W. Wang, Y. Fu, and Q. Xie, Atomic-scale insights into interface thermal resistance between epoxy and boron nitride in nanocomposites, Int. J. Heat Mass Transf., vol. 159, no. 12, pp. 120105, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120105.
  • A. Chaurasia, and A. Parashar, Experimental and atomistic insight on the thermal transport properties of h-BN/high density polyethylene nanocomposite, Int. J. Heat Mass Transf., vol. 170, pp. 121039, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121039.
  • H. K. Choi, H. Jung, Y. Oh, H. Hong, J. Yu, and E. S. Shin, Interfacial effects of nitrogen-doped carbon nanotubes on mechanical and thermal properties of nanocomposites: A molecular dynamics study, Compos. Part B: Eng., vol. 167, pp. 615–620, 2019. DOI: 10.1016/j.compositesb.2019.03.036.
  • Q. Bao, Z. Yang, and Z. Lu, Molecular dynamics simulation of amorphous polyethylene (PE) under cyclic tensile-compressive loading below the glass transition temperature, Polymer, vol. 186, pp. 121968, 2020. DOI: 10.1016/j.polymer.2019.121968.
  • X. Shen, X. Lin, J. Jia, Z. Wang, Z. Li, and J. Kim, Tunable thermal conductivities of graphene oxide by functionalization and tensile loading, Carbon, vol. 80, pp. 235–245, 2014. DOI: 10.1016/j.carbon.2014.08.062.
  • J. Zhang, et al., Effect of tensile strain on thermal conductivity in monolayer graphene nanoribbons: a molecular dynamics study, Sensors (Basel), vol. 13, no. 7, pp. 9388–9395, 2013. DOI: 10.3390/s130709388.
  • A. Tabarraei, and X. Wang, Anomalous thermal conductivity of monolayer boron nitride, Appl. Phys. Lett., vol. 108, no. 18, pp. 181904, 2016. DOI: 10.1063/1.4948650.
  • N. Marom, et al., Stacking and registry effects in layered materials: The case of hexagonal boron nitride, Phys. Rev. Lett., vol. 105, no. 4, pp. 046801, 2010. DOI: 10.1103/PhysRevLett.105.046801.
  • J. Song, et al., Thermal transport properties of graphite carbon nitride, Phys. Chem. Chem. Phys., vol. 22, no. 39, pp. 22785–22795, 2020. DOI: 10.1039/d0cp03513k.
  • J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, 1996. DOI: 10.1103/PhysRevLett.77.3865.
  • H. J. Park, et al., One-dimensional hexagonal boron nitride conducting channel, Sci. Adv., vol. 6, no. 10, pp. eaay4958, 2020. DOI: 10.1126/sciadv.aay4958.
  • C. Wang, S. Lu, X. Yu, and H. Li, Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons, Chin. Phys. B, vol. 28, no. 1, pp. 016501, 2019. DOI: 10.1088/1674-1056/28/1/016501.
  • W. Ouyang, H. Qin, M. Urbakh, and O. Hod, Controllable thermal conductivity in twisted homogeneous interfaces of graphene and hexagonal boron nitride, Nano Lett., vol. 20, no. 10, pp. 7513–7518, 2020. DOI: 10.1021/acs.nanolett.0c02983.
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., vol. 117, no. 1, pp. 1–19, 1995. DOI: 10.1006/jcph.1995.1039.
  • Alexey Bosak, Jorge Serrano, Michael Krisch, Kenji Watanabe, Takashi Taniguchi, and Hisao Kanda, Elasticity of hexagonal boron nitride: Inelastic x-ray scattering measurements, Phys. Rev. B., vol. 73, no. 4, pp. 041402, 2006. DOI: 10.1103/PhysRevB.73.041402.
  • F. L. Thiemann, P. Rowe, E. A. Muller, and A. Michaelides, Machine learning potential for hexagonal boron nitride applied to thermally and mechanically induced rippling, J. Phys. Chem. C., vol. 124, no. 40, pp. 22278–22290, 2020. DOI: 10.1021/acs.jpcc.0c05831.
  • M. Mirnezhad, R. Ansari, and H. Rouhi, Mechanical properties of multilayer boron nitride with different stacking orders, Superlattices Microstruct., vol. 53, pp. 223–231, 2013. DOI: 10.1016/j.spmi.2012.10.016.
  • B. Mortazavi, and Y. Remond, Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations, Physica E: Low Dimens. Syst. Nanostruct., vol. 44, no. 9, pp. 1846–1852, 2012. DOI: 10.1016/j.physe.2012.05.007.
  • S. Zhao, and J. Xue, Mechanical properties of hybrid graphene and hexagonal boron nitride sheets as revealed by molecular dynamic simulations, J. Phys. D: Appl. Phys., vol. 46, no. 13, pp. 135303, 2013. DOI: 10.1088/0022-3727/46/13/135303.
  • T. Han, Y. Luo, and C. Wang, Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets, J. Phys. D: Appl. Phys., vol. 47, no. 2, pp. 025303, 2014. DOI: 10.1088/0022-3727/47/2/025303.
  • A. Tabarraei, Thermal conductivity of monolayer hexagonal boron nitride nanoribbons, Comput. Mater. Sci., vol. 108, pp. 66–71, 2015. DOI: 10.1016/j.commatsci.2015.06.006.
  • Y. Zhang, Q. Pei, H. Liu, and N. Wei, Thermal conductivity of a h-BCN monolayer, Phys. Chem. Chem. Phys., vol. 19, no. 40, pp. 27326–27331, 2017. DOI: 10.1039/C7CP04982J.
  • R. C. Picu, T. B. Tasciuc, and M. C. Pavel, Strain and size effects on heat transport in nanostructures, J. Appl. Phys., vol. 93, no. 6, pp. 3535–3539, 2003. DOI: 10.1063/1.1555256.
  • I. A. Navid, A. I. Khan, and S. Subrina, Impact of tensile strain on the thermal transport of zigzag hexagonal boron nitride nanoribbon: An equilibrium molecular dynamics study, Mater. Res. Express., vol. 5, no. 2, pp. 025015, 2018. DOI: 10.1088/2053-1591/aaaa89.
  • A. V. Lebedev, I. V. Lebedeva, A. A. Knizhnik, and A. M. Popov, Interlayer interaction and related properties of bilayer hexagonal boron nitride: ab initio study, RSC Adv., vol. 6, no. 8, pp. 6423–6435, 2016. DOI: 10.1039/C5RA20882C.
  • J. H. Warner, M. H. Rummeli, A. Bachmatiuk, and B. Buchner, Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation, ACS Nano, vol. 4, no. 3, pp. 1299–1304, 2010. DOI: 10.1021/nn901648q.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.