217
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A simplified estimation method for tensile softening curve of quasi-brittle materials

, ORCID Icon, , &
Pages 6994-7003 | Received 31 Aug 2021, Accepted 05 Oct 2021, Published online: 18 Oct 2021

References

  • M.G.G.V. Elices, G.V. Guinea, J. Gomez, and J. Planas, The cohesive zone model: advantages, limitations and challenges, Eng. Fract. Mech., vol. 69, no. 2, pp. 137–163, 2002. DOI: 10.1016/S0013-7944(01)00083-2.
  • A. Pirooznia, and A. Moradloo, Investigation of size effect and smeared crack models in ordinary and dam concrete fracture tests, Eng. Fract. Mech., vol. 226, pp. 106863, 2020. DOI: 10.1016/j.engfracmech.2019.106863.
  • P. Dhaladhuli, R. Amirtham, and J.N. Reddy, Interaction between interfacial damage and crack propagation in quasi-brittle materials, Mech. Adv. Mater. Struct., vol. 28, pp. 1–22, 2021. DOI: 10.1080/15376494.2021.1891356.
  • J. Guan, P. Yuan, L. Li, X. Yao, Y. Zhang, and W. Meng, Rock fracture with statistical determination of fictitious crack growth, Theor. Appl. Fract. Mech., vol. 112, pp. 102895, 2021. DOI: 10.1016/j.tafmec.2021.102895.
  • Z. Guo, J. Li, Y. Song, C. He, and F. Zhang, The size effect and microstructure changes of granite after heat treatment, Adv. Mater. Sci. Eng., vol. 2021, pp. 1–14, 2021. DOI: 10.1155/2021/9958255.
  • S. Samadi, S. Jin, D. Gruber, and H. Harmuth, A comparison of two damage models for inverse identification of mode I fracture parameters: case study of a refractory ceramic, Int. J. Mech. Sci., vol. 197, pp. 106345, 2021. DOI: 10.1016/j.ijmecsci.2021.106345.
  • T.Q. Bui, and X. Hu, A review of phase-field models, fundamentals and their applications to composite laminates, Eng. Fract. Mech., vol. 248, pp. 107705, 2021. DOI: 10.1016/j.engfracmech.2021.107705.
  • P. Zhang, X. Hu, T.Q. Bui, and W. Yao, Phase field modeling of fracture in fiber reinforced composite laminate, Int. J. Mech. Sci., vol. 161–162, pp. 105008, 2019. DOI: 10.1016/j.ijmecsci.2019.07.007.
  • K. Park, Concrete fracture mechanics and size effect using a specialized cohesive zone model, Doctoral dissertation, University of Illinois at Urbana-Champaign, Champaign, 2005.
  • Y. Wu, T. Yin, X. Tan, and D. Zhuang, Determination of the mixed mode I/II fracture characteristics of heat-treated granite specimens based on the extended finite element method, Eng. Fract. Mech., vol. 252, pp. 107818, 2021. DOI: 10.1016/j.engfracmech.2021.107818.
  • X. Hu, P. Zhang, and W. Yao, Phase field modelling of microscopic failure in composite laminates, J. Compos. Mater., vol. 55, no. 14, pp. 1853–1865, 2021. DOI: 10.1177/0021998320976794.
  • P. Zhang, W. Yao, X. Hu, and T.Q. Bui, 3D micromechanical progressive failure simulation for fiber-reinforced composites, Compos. Struct., vol. 249, pp. 112534, 2020. DOI: 10.1016/j.compstruct.2020.112534.
  • P. Zhang, Y. Feng, T.Q. Bui, X. Hu, and W. Yao, Modelling distinct failure mechanisms in composite materials by a combined phase field method, Compos. Struct., vol. 232, pp. 111551, 2020. DOI: 10.1016/j.compstruct.2019.111551.
  • X.F. Hu, A. Haris, M. Ridha, V.B.C. Tan, and T.E. Tay, Progressive failure of bolted single-lap joints of woven fibre-reinforced composites, Compos. Struct., vol. 189, pp. 443–454, 2018. DOI: 10.1016/j.compstruct.2018.01.104.
  • V. Slowik, B. Villmann, N. Bretschneider, and T. Villmann, Computational aspects of inverse analyses for determining softening curves of concrete, Comput. Methods Appl. Mech. Eng., vol. 195, no. 52, pp. 7223–7236, 2006. DOI: 10.1016/j.cma.2005.04.021.
  • N. Kumar, A. Rajagopal, and M. Pandey, A rate independent cohesive zone model for modeling failure in quasi-brittle materials, Mech. Adv. Mater. Struct., vol. 22, no. 8, pp. 681–696, 2015. DOI: 10.1080/15376494.2013.855852.
  • C. Guo, and Z. Lu, Effect of temperature on CFST arch bridge ribs in harsh weather environments, Mech. Adv. Mater. Struct., vol. 27, pp. 1–16, 2020. DOI: 10.1080/15376494.2020.1790701.
  • A. Farrokhabadi, H. Madadi, M. Naghdinasab, A. Rafie, S.A. Taghizadeh, and M. Herráez, Micromechanical investigation of cross-ply carbon composite laminates with glass microtubes using CZM and XFEM, Mech. Adv. Mater. Struct., vol. 28, pp. 1–13, 2021. DOI: 10.1080/15376494.2021.1961177.
  • X.F. Hu, X. Lu, and T.E. Tay, Modelling delamination migration using virtual embedded cohesive elements formed through floating nodes, Compos. Struct., vol. 204, pp. 500–512, 2018. DOI: 10.1016/j.compstruct.2018.07.120.
  • X.F. Hu, B.Y. Chen, M. Tirvaudey, V.B.C. Tan, and T.E. Tay, Integrated XFEM-CE analysis of delamination migration in multi-directional composite laminates, Compos. Part A: Appl. Sci. Manuf., vol. 90, pp. 161–173, 2016. DOI: 10.1016/j.compositesa.2016.07.007.
  • S. Okubo, K. Fukui, and Q. Qingxin, Uniaxial compression and tension tests of anthracite and loading rate dependence of peak strength, Int. J. Coal Geol., vol. 68, no. 3–4, pp. 196–204, 2006. DOI: 10.1016/j.coal.2006.02.004.
  • Y. Uchida, N. Kurihara, K. Rokugo, and W. Koyanagi, Determination of tension softening diagrams of various kinds of concrete by means of numerical analysis, Fract. Mech. Concr. Struct., vol. 1, pp. 17–30, 1995.
  • R.K.L. Su, H.H.N. Chen, and A.K.H. Kwan, Incremental displacement collocation method for the evaluation of tension softening curve of mortar, Eng. Fract. Mech., vol. 88, pp. 49–62, 2012. DOI: 10.1016/j.engfracmech.2012.04.005.
  • H.H. Chen, and R.K.L. Su, Tension softening curves of plain concrete, Constr. Build. Mater., vol. 44, pp. 440–451, 2013. DOI: 10.1016/j.conbuildmat.2013.03.040.
  • Y.X. Tang, R.K.L. Su, and H.N. Chen, Characterization on tensile behaviors of fracture process zone of nuclear graphite using a hybrid numerical and experimental approach, Carbon., vol. 155, pp. 531–544, 2019. DOI: 10.1016/j.carbon.2019.08.081.
  • S.J. Duan, and N. Kenji, Stress functions with finite stress concentration at the crack tips for a central cracked panel, Eng. Fract. Mech., vol. 29, no. 5, pp. 517–526, 1988. DOI: 10.1016/0013-7944(88)90177-4.
  • Y.K. Hou, S.J. Duan, and R.M. An, Solving the cohesive zone model analytic function for concrete based on wedge-splitting test on a compact tension specimen, Theor. Appl. Fract. Mech., vol. 102, pp. 162–170, 2019. DOI: 10.1016/j.tafmec.2019.04.015.
  • J. Zhang, C.K. Leung, and S. Xu, Evaluation of fracture parameters of concrete from bending test using inverse analysis approach, Mater Struct., vol. 43, no. 6, pp. 857–874, 2010. DOI: 10.1617/s11527-009-9552-5.
  • J.F. Guan, L.B. Qing, and S.B. Zhao, Research on numerical simulation on the whole cracking processes of three-point bending notch concrete beams, Chinese J. Comput. Mech., vol. 30, no. 01, pp. 143–148 + 155, 2013. .
  • L.B. Qing, Q.B. Li, J.F. Guan, and J. Wang, Study of concrete fracture process zone based on cohesive zone model, Chinese J. Eng. Mech., vol. 29, no. 09, pp. 112–116 + 132, 2012. DOI: 10.6052/j.issn.1000-4750.2011.01.0016.
  • L. Wang, S. Xu, and X. Zhao, Analysis on cohesive crack opening displacement considering the strain softening effect, Sci. China Ser. G, vol. 49, no. 1, pp. 88–101, 2006. DOI: 10.1007/s11433-005-0089-5.
  • S. Xu, and H.W. Reinhardt, Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part I: Experimental investigation of crack propagation, Int. J. Fract., vol. 98, no. 2, pp. 111–149, 1999. DOI: 10.1023/A:1018668929989.
  • H.W. Wang, Z.M. Wu, Y.J. Wang, and C.Y. Rena, An analytical method for predicting mode-I crack propagation process and resistance curve of rock and concrete materials, Theor. Appl. Fract. Mech., vol. 100, pp. 328–341, 2019. DOI: 10.1016/j.tafmec.2019.01.019.
  • C. Huang, 2016. Research on mechanical properties of concrete fracture process zone based on digital image correlation method, Master dissertation, Chongqing Jiaotong University, Chongqing.
  • B.N. Cox, and D.B. Marshall, Stable and unstable solutions for bridged cracks in various specimens, Acta Metall. Mater., vol. 39, no. 4, pp. 579–589, 1991. DOI: 10.1016/0956-7151(91)90126-L.
  • M.D. Ghouse, C. Lakshmana Rao, and B.N. Rao, Numerical Simulation of Fracture Process in Cement Concrete Using Unit Cell Approach, Mech. Adv. Mater. Struct., vol. 17, no. 7, pp. 481–487, 2010. DOI: 10.1080/15376494.2010.509189.
  • A. Hillerborg, M. Modéer, and P.E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cem. Concr. Res., vol. 6, no. 6, pp. 773–781, 1976. DOI: 10.1016/0008-8846(76)90007-7.
  • H. Tada, P. Paris, and G. Irwin, 2000. The analysis of cracks handbook, vol. 2, New York: ASME Press, 1.
  • H.F. Bueckner, Novel principle for the computation of stress intensity factors, Z. Fuer Angew. Math. Mech., vol. 50, no. 9, pp. 529–546, 1970.
  • S. Kumar, and S.V. Barai, Determining the double‐K fracture parameters for three‐point bending notched concrete beams using weight function, Fatigue Fract. Eng. Mater. Struct., vol. 33, no. 10, pp. 645–660, 2010. DOI: 10.1111/j.1460-2695.2010.01477.x.
  • L. Qing, and Q. Li, A theoretical method for determining initiation toughness based on experimental peak load, Eng. Fract. Mech., vol. 99, pp. 295–305, 2013. DOI: 10.1016/j.engfracmech.2013.01.012.
  • P.E. Petersson, 1981. Crack growth and development of fracture zones in plain concrete and similar materials. Report TVBM-1006. http://lup.lub.lu.se/record/1272935
  • W. Hao, J. Zhu, Q. Zhu, L. Chen, and L. Li, Displacement field denoising for high-temperature digital image correlation using principal component analysis, Mech. Adv. Mater. Struct., vol. 24, no. 10, pp. 830–839, 2017. DOI: 10.1080/15376494.2016.1196787.
  • I.I. Qamhia, S.S. Shams, and R.F. El-Hajjar, Quasi-isotropic triaxially braided cellulose-reinforced composites, Mech. Adv. Mater. Struct., vol. 22, no. 12, pp. 988–995, 2015. DOI: 10.1080/15376494.2014.884661.
  • Q. Wang, H. Chen, B. Yuan, X. Huang, and Y. Zhao, Behaviors of crack propagation in concrete using electronic speckle pattern interferometry, J. Hydroelectric Eng., vol. 29, pp. 26–35, 2018. DOI: 10.11660/slfdxb.20180403.
  • N. Dutler, M. Nejati, B. Valley, F. Amann, and G. Molinari, On the link between fracture toughness, tensile strength, and fracture process zone in anisotropic rocks, Eng. Fract. Mech., vol. 201, pp. 56–79, 2018. DOI: 10.1016/j.engfracmech.2018.08.017.
  • Z. Wu, H. Rong, J. Zheng, F. Xu, and W. Dong, An experimental investigation on the FPZ properties in concrete using digital image correlation technique, Eng. Fract. Mech., vol. 78, no. 17, pp. 2978–2990, 2011. DOI: 10.1016/j.engfracmech.2011.08.016.
  • Q. Lin, B. Wan, S. Wang, S. Li, and A. Fakhimi, Visual detection of a cohesionless crack in rock under three-point bending, Eng. Fract. Mech., vol. 211, pp. 17–31, 2019. DOI: 10.1016/j.engfracmech.2019.02.009.
  • B. Fan, Y. Qiao, and S. Hu, Evaluation of tension softening curve of concrete at low temperatures using the incremental displacement collocation method, Eng. Fract. Mech., vol. 226, pp. 106878, 2020. DOI: 10.1016/j.engfracmech.2020.106878.
  • W. Dong, H. Rong, Q. Wu, and J. Li, Investigations on the FPZ evolution of concrete after sustained loading by means of the DIC technique, Constr. Build. Mater., vol. 188, pp. 49–57, 2018. DOI: 10.1016/j.conbuildmat.2018.08.077.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.