409
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Effects of ultrasonic amplitude on sapphire ultrasonic vibration assisted chemical mechanical polishing by experimental and CFD method

, &
Pages 7086-7103 | Received 10 Aug 2021, Accepted 09 Oct 2021, Published online: 04 Nov 2021

References

  • L. Xu, H. Lei, T. Wang, Y. Dong, and S. Dai, Preparation of flower-shaped silica abrasives by double system template method and its effect on polishing performance of sapphire wafers, Ceram. Int., vol. 45, no. 7, pp. 8471–8476, 2019. DOI: 10.1016/j.ceramint.2019.01.158.
  • Y.J. Lee, P.C. Lin, T.C. Lu, H.C. Kuo, and S.C. Wang, Dichromatic InGaN-based white light emitting diodes by using laser lift-off and wafer-bonding schemes, Appl. Phys. Lett., vol. 90, no. 16, pp. 161115, 2007. DOI: 10.1063/1.2722672.
  • S. Nakamura, InGaN-based laser diodes, Annu. Rev. Mater. Sci., vol. 28, no. 1, pp. 125–152, 1998. DOI: 10.1146/annurev.matsci.28.1.125.
  • W. Xu, Y. Cheng, and M. Zhong, Effects of process parameters on chemical-mechanical interactions during sapphire polishing, Microelectron. Eng., vol. 216, pp. 111029, 2019. doi: DOI: 10.1016/j.mee.2019.111029.
  • W. Xu, X. Lu, G. Pan, Y. Lei, and J. Luo, Effects of the ultrasonic flexural vibration on the interaction between the abrasive particles; pad and sapphire substrate during chemical mechanical polishing (CMP), Appl. Surf. Sci., vol. 257, no. 7, pp. 2905–2911, 2011. DOI: 10.1016/j.apsusc.2010.10.088.
  • W. Yan, Z. Zhang, X. Guo, W. Liu, and Z. Song, The effect of pH on sapphire chemical mechanical polishing, ECS J. Solid State Sci. Technol., vol. 4, no. 3, pp. P108–P111, 2015. DOI: 10.1149/2.0241503jss.
  • L. Wang, Z. Hu, Y. Chen, Y. Yu, and X. Xu, Material removal mechanism of sapphire substrates with four crystal orientations by double-sided planetary grinding, Ceram. Int., vol. 46, no. 6, pp. 7813–7822, 2020. DOI: 10.1016/j.ceramint.2019.11.284.
  • N. Thomas, A.R. Srinivasa, and S.T.S. Bukkapatnam, A mixed experimental-CFD-data science approach for rheological measurement of polishing fluids, Mech. Adv. Mater. Struct., vol. 27, no. 13, pp. 1167–1177, 2020. DOI: 10.1080/15376494.2020.1745967.
  • G. Wang, H. Zuo, H. Zhang, Q. Wu, M. Zhang, X. He, Z. Hu, and Z. Lin, Preparation, quality characterization, service performance evaluation and its modification of sapphire crystal for optical window and dome application, Mater. Des., vol. 31, no. 2, pp. 706–711, 2010. DOI: 10.1016/j.matdes.2009.08.015.
  • Y. Chen, W. Huang, Y. Zhang, K. Li, and M. Yu, Novel high efficiency deterministic polishing method using magnetorheological elastomer, Smart Mater. Struct., vol. 29, no. 11, pp. 114008, 2020. DOI: 10.1088/1361-665X/abb989.
  • D. Golini, W. I. Kordonski, P. Dumas, and S.J. Hogan, Magnetorheological finishing (MRF) in commercial precision optics manufacturing. In: Optical Manufacturing and Testing III, SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, United States, 1999.
  • D. Kang, P. Zou, H. Wu, W. Wang, and J. Xu, Research on ultrasonic vibration-assisted laser polishing of the 304 stainless steel, J. Manuf. Process., vol. 62, pp. 403–417, 2021. DOI: 10.1016/j.jmapro.2020.12.009.
  • W.L. Song, S.B. Choi, Q.C. Cai, J.Y. Choi, and C.H. Lee, Finishing performance of magneto-rheological fluid under magnetic field, Mech. Adv. Mater. Struct., vol. 20, no. 7, pp. 529–535, 2013. DOI: 10.1080/15376494.2011.640972.
  • Y. Dong, H. Lei, Y. Chen, W. Liu, and S. Dai, Preparation of irregular silica nanoparticles by the polymer templating for chemical mechanical polishing of sapphire substrates, J. Electron. Mater., vol. 48, no. 7, pp. 4598–4606, 2019. DOI: 10.1007/s11664-019-07248-w.
  • P. Zhang, Y.Z. Dong, H.J. Choi, C.-H. Lee, and Y.-S. Gao, Reciprocating magnetorheological polishing method for borosilicate glass surface smoothness, J. Ind. Eng. Chem., vol. 84, pp. 243–251, 2020. DOI: 10.1016/j.jiec.2020.01.004.
  • J. Zhao, R. Wang, E. Jiang, and S. Ji, Research on a new method for optimizing surface roughness of cavitation abrasive flow polishing monocrystalline silicon, Int. J. Adv. Manuf. Technol., vol. 113, no. 56, pp. 1649–1661, 2021. DOI: 10.1007/s00170-021-06667-6.
  • J. Zhou, X. Han, H. Li, S. Liu, and D. Zhang, In-situ laser polishing additive manufactured AlSi10Mg: Effect of laser polishing strategy on surface morphology, roughness and microhardness, Materials, vol. 14, no. 2, pp. 393, 2021. DOI: 10.3390/ma14020393.
  • T.Y. Kwon, M. Ramachandran, and J.G. Park, Scratch formation and its mechanism in chemical mechanical planarization (CMP), Friction, vol. 1, no. 4, pp. 279–305, 2013. DOI: 10.1007/s40544-013-0026-y.
  • Y. Zhou, G. Pan, X. Shi, H. Gong, L. Xu, and C. Zou, AFM and XPS studies on material removal mechanism of sapphire wafer during chemical mechanical polishing (CMP), J. Mater. Sci: Mater. Electron., vol. 26, no. 12, pp. 9921–9928, 2015. DOI: 10.1007/s10854-015-3668-x.
  • G. Nanz and L.E. Camilletti, Modeling of chemical-mechanical polishing: A review, IEEE Trans. Semicond. Manufact., vol. 8, no. 4, pp. 382–389, 1995. DOI: 10.1109/66.475179.
  • D.G. Thakurta, C.L. Borst, D.W. Schwendeman, R.J. Gutmann, and W.N. Gill, Pad porosity, compressibility and slurry delivery effects in chemical-mechanical planarization: Modeling and experiments, Thin Solid Films., vol. 366, no. 12, pp. 181–190, 2000. DOI: 10.1016/S0040-6090(00)00748-3.
  • D.H. Lee, D.J. Kwon, Y.K. Hong, and J.G. Park, A 3D numerical study of the polishing behavior during an oxide chemical mechanical planarization process, KEM., vol. 257–258, pp. 433–440, 2004. DOI: 10.4028/www.scientific.net/KEM.257-258.433.
  • N.Y. Nguyen, Y. Tian, and Z.W. Zhong, Modeling and simulation for the distribution of slurry particles in chemical mechanical polishing, Int. J. Adv. Manuf. Technol., vol. 75, no. 1–4, pp. 97–106, 2014. DOI: 10.1007/s00170-014-6132-9.
  • Z. Li, Z. Deng, and Y. Hu, Effects of polishing parameters on surface quality in sapphire double-sided CMP, Ceram. Int., vol. 46, no. 9, pp. 13356–13364, 2020. DOI: 10.1016/j.ceramint.2020.02.116.
  • S. Dai, H. Lei, and J. Fu, Preparation of SiC/SiO2 hard core–soft shell abrasive and its CMP behavior on sapphire substrate, J. Electron. Mater., vol. 49, no. 2, pp. 1301–1307, 2020. DOI: 10.1007/s11664-019-07683-9.
  • L. Xu, X. Zhang, C. Kang, R. Wang, C. Zou, Y. Zhou, and G. Pan, Preparation of a novel catalyst (SoFeIII) and its catalytic performance towards the removal rate of sapphire substrate during CMP process, Tribol. Int., vol. 120, pp. 99–104, 2018. DOI: 10.1016/j.triboint.2017.12.016.
  • T. Wang and H. Lei, Novel polyelectrolyte–Al2O3/SiO2 composite nanoabrasives for improved chemical mechanical polishing (CMP) of sapphire, J. Mater. Res., vol. 34, no. 6, pp. 1073–1082, 2019. DOI: 10.1557/jmr.2018.443.
  • A. Hosseini, M. Rahaeifard, and M. Mojahedi, Analytical and numerical investigations of the ultrasonic microprobe considering size effects, Mech. Adv. Mater. Struct., vol. 27, no. 24, pp. 2043–2051, 2020. DOI: 10.1080/15376494.2018.1539890.
  • R. Roohi, E. Abedi, S.M.B. Hashemi, K. Marszałek, J.M. Lorenzo, and F.J. Barba, Ultrasound-assisted bleaching: Mathematical and 3D computational fluid dynamics simulation of ultrasound parameters on microbubble formation and cavitation structures, Innov. Food Sci. Emerg. Technol., vol. 55, pp. 66–79, 2019. DOI: 10.1016/j.ifset.2019.05.014.
  • K.S. Suslick and G.J. Price, Applications of ultrasound to materials chemistry, Annu. Rev. Mater. Sci., vol. 29, no. 1, pp. 295–326, 1999. DOI: 10.1146/annurev.matsci.29.1.295.
  • G. Shen, L. Ma, S. Zhang, S. Zhang, and L. An, Effect of ultrasonic waves on heat transfer in Al2O3 nanofluid under natural convection and pool boiling, Int. J. Heat Mass Transf., vol. 138, pp. 516–523, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.071.
  • C.K. Toh, The use of ultrasonic cavitation peening to improve micro-burr-free surfaces, Int. J. Adv. Manuf. Technol., vol. 31, no. 78, pp. 688–693, 2006. DOI: 10.1007/s00170-005-0249-9.
  • W. Xu, X. Lu, G. Pan, Y. Lei, and J. Luo, Ultrasonic flexural vibration assisted chemical mechanical polishing for sapphire substrate, Appl. Surf. Sci., vol. 256, no. 12, pp. 3936–3940, 2010. DOI: 10.1016/j.apsusc.2010.01.053.
  • J.W. Kang, Y.S. Hu, M. Jy, and T.Y. Huang, Effect of different air content on cavitation with ultrasonic treatment, 3rd International Conference on Advances in Materials Manufacturing, Trans Tech Publications, Switzerland, 2013. DOI: 10.4028/www.scientific.net/AMR.655-657.43.
  • T. Yu, T. Zhang, T. Yang, and J. Zhao, CFD simulation and experimental studies of suspension flow field in ultrasonic polishing, J. Mater. Process. Technol., vol. 266, pp. 715–725, 2019. DOI: 10.1016/j.jmatprotec.2018.11.034.
  • J. Tichy, J.A. Levert, L. Shan, and S. Danyluk, Contact mechanics and lubrication hydrodynamics of chemical mechanical polishing, J. Electrochem. Soc., vol. 146, no. 4, pp. 1523–1528, 1999. DOI: 10.1149/1.1391798.
  • A.K. Singhal, M.M. Athavale, H.Y. Li, and Y. Jiang, Mathematical basis and validation of the full cavitation model, J. Fluids Eng.-Trans. ASME., vol. 124, no. 3, pp. 617–624, 2002. DOI: 10.1115/1.1486223.
  • B. Sajjadi, A.A. Raman, and S. Ibrahim, Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: Mathematical and 3D computational simulation, Ultrason. Sonochem., vol. 24, pp. 193–203, 2015. DOI: 10.1016/j.ultsonch.2014.11.013.
  • G.P. Muldowney, Modeling CMP transport and kinetics at the pad groove scale. In: D. S. Boning, J. W. Bartha, A. Philipossian, G. Shinn, and I. Vos (eds.), Symposium on Advances in Chemical-Mechanical Polishing Held at the 2004 MRS Spring Meeting, San Francisco, CA, 2004.
  • K. Nagayama, H. Morishita, K. Kimura, K. Tanaka, P. Khajornrungruang, and Y. Inatsu, A computational study on slurry flow between a wafer and CMP pad with grooves, 11th International Conference on Precision Engineering, Tokyo, Japan, 2007.
  • Y.B. Tian, S.T. Lai, and Z.W. Zhong, Slurry flow visualisation of chemical mechanical polishing based on a computational fluid dynamics model, AMR., vol. 565, pp. 324–329, 2012. DOI: 10.4028/www.scientific.net/AMR.565.324.
  • J.L. Laborde, C. Bouyer, J.P. Caltagirone, and A. Gérard, Acoustic cavitation field prediction at low and high frequency ultrasounds, Ultrasonics, vol. 36, no. 1–5, pp. 581–587, 1998. DOI: 10.1016/S0041-624X(97)00106-6.
  • D. Liu, R. Yan, and T. Chen, Material removal model of ultrasonic elliptical vibration-assisted chemical mechanical polishing for hard and brittle materials, Int. J. Adv. Manuf. Technol., vol. 92, no. 14, pp. 81–99, 2017. DOI: 10.1007/s00170-017-0081-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.