146
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Microstructural and mechanical properties of the plantain fiber/local clay filled hybrid polystyrene composites

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 7104-7114 | Received 27 Sep 2021, Accepted 09 Oct 2021, Published online: 18 Nov 2021

References

  • O. Ikumapayi, E. Akinlabi, O. Abegunde, and O. Fayomi, Electrochemical investigation of calcined agrowastes powders on friction stir processing of aluminium-based matrix composites, Mater. Today: Proc., vol. 26, pp. 3238–3245, 2020. DOI: 10.1016/j.matpr.2020.02.906.
  • M. Afolabi, O. Abubakre, S.A. Lawal, and A. AbdulKabir, Experimental investigation of palm kernel shell and cow bone reinforced polymer composites for brake pad production, 2015.
  • S. Abdulkareem, and A. Adeniyi, Production of particle boards using polystyrene and bamboo wastes, Nig. J. Tech., vol. 36, no. 3, pp. 788–793, 2017. DOI: 10.4314/njt.v36i3.18.
  • S.A. Abdulkareem, S.A. Raji, and A.G. Adeniyi, Tensile and water absorbing properties of natural fibre reinforced plastic composites from waste polystyrene and rice husk, Nig. J. Technol. Dev., vol. 14, no. 1, pp. 18–22, 2017. DOI: 10.4314/njtd.v14i1.3.
  • S.A. Abdulkareem, M.K. Amosa, A.G. Adeniyi, S.A. Adeoye, and A.K. Ajayi, Development of natural fibre reinforced polystyrene (NFRP) composites: Impact resistance study, IOP Conf. Ser: Mater. Sci. Eng., vol. 640, pp. 012059, 2020. DOI: 10.1088/1757-899X/640/1/012059.
  • A.G. Adeniyi, S.A. Abdulkareem, J.O. Ighalo, D.V. Onifade, S.A. Adeoye, and A.E. Sampson, Morphological and thermal properties of polystyrene composite reinforced with biochar from elephant grass (Pennisetum purpureum), J. Thermoplast. Compos. Mater., 2020. DOI: 10.1177/0892705720939169.
  • S. Abdulkareem, A. Adeniyi, M. Amosa, and S. Raji, Development of plastic composite using waste sawdust, rice husk and bamboo in the polystyrene-based resin (PBR) matrix at ambient conditions. In Valorization of Biomass to Value-Added Commodities. Berlin: Springer, pp. 423–438, 2020.
  • A.G. Adeniyi, S.A. Abdulkareem, S.A. Adeoye, and J.O. Ighalo, Preparation and properties of wood dust (Isoberlinia doka) reinforced polystyrene composites, Polym. Bull., pp. 1–19, 2021. DOI: 10.1007/s00289-021-03718-6.
  • A.G. Adeniyi, S.A. Abdulkareem, J.O. Ighalo, O.D. Saliu, M.K. Amosa, and R.O. Momoh, Crystallographic, functional group and microstructural properties of oil palm biochar reinforced hybrid polystyrene composite doped with aluminium, Adv. Mater Process. Technol., pp. 1–12, 2021. DOI: 10.1080/2374068X.2021.1945288.
  • A.G. Adeniyi, J.O. Ighalo, and D.V. Onifade, Banana and plantain fiber-reinforced polymer composites, J. Polym. Eng., vol. 39, no. 7, pp. 597–611, 2019. DOI: 10.1515/polyeng-2019-0085.
  • A.G. Adeniyi, and J.O. Ighalo, A systematic review of pure metals reinforced plastic composites, Iran. Polym. J., vol. 30, no. 7, pp. 751–718, 2021. DOI: 10.1007/s13726-021-00922-z.
  • A.G. Adeniyi, D.V. Onifade, J.O. Ighalo, and A.S. Adeoye, A review of coir fiber reinforced polymer composites, Compos Part B: Eng., vol. 176, pp. 107305, 2019. DOI: 10.1016/j.compositesb.2019.107305.
  • H. Essabir, R. Boujmal, M.O. Bensalah, D. Rodrigue, R. Bouhfid, and A.e k Qaiss, Mechanical and thermal properties of hybrid composites: Oil-palm fiber/clay reinforced high density polyethylene, Mech. Mater., vol. 98, pp. 36–43, 2016. DOI: 10.1016/j.mechmat.2016.04.008.
  • A. Haneefa, P. Bindu, I. Aravind, and S. Thomas, Studies on tensile and flexural properties of short banana/glass hybrid fiber reinforced polystyrene composites, J. Compos. Mater., vol. 42, no. 15, pp. 1471–1489, 2008. DOI: 10.1177/0021998308092194.
  • S. Mishra, et al., Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites, Compos. Sci. Technol., vol. 63, no. 10, pp. 1377–1385, 2003/08/01/, 2003. DOI: 10.1016/S0266-3538(03)00084-8.
  • S. Abdulkareem, and A. Adeniyi, Preparation and evaluation of electrical properties of plastic composites developed from recycled polystyrene and local clay, Nig. J. Technol. Dev., vol. 15, no. 3, pp. 98–101, 2018. DOI: 10.4314/njtd.v15i3.4.
  • A.G. Adeniyi, J.O. Ighalo, and C.A. Adeyanju, Materials-to-product potentials for sustainable development in Nigeria, Int. J. Sustainable Eng., vol. 14, no. 4, pp. 664–668, 2021. DOI: 10.1080/19397038.2021.1896591.
  • A.G. Adeniyi, D.V. Onifade, S.A. Abdulkareem, M.K. Amosa, and J.O. Ighalo, Valorization of plantain stalk and polystyrene wastes for composite development, J. Polym. Environ., vol. 28, no. 10, pp. 2644–2651, 2020. 2020/06/26, DOI: 10.1007/s10924-020-01796-7.
  • S.A. Abdulkareem, and A.G. Adeniyi, Tensile and water absorbing properties of natural fibre reinforced plastic composites from waste polystyrene and rice husk, 2018.
  • A.G. Adeniyi, J.O. Ighalo, and S.A. Abdulkareem, Al, Fe and Cu waste metallic particles in conductive polystyrene composites, Int. J. Sustainable Eng., vol. 14, no. 4, pp. 893–896, 2021. DOI: 10.1080/19397038.2020.1793426.
  • J.O. Ighalo, A.G. Adeniyi, and S.A. Abdulkareem, Thermal, functional group and microstructural analysis of fibrillated composites developed from polystyrene and plantain stalk wastes, Matls. Perf. Charact., vol. 10, no. 1, pp. 20200047–20200352, 2021. DOI: 10.1520/MPC20200047.
  • J.O. Ighalo, A.G. Adeniyi, O.O. Owolabi, and S.A. Abdulkareem, Moisture absorption, thermal and microstructural properties of polymer composites developed from rice husk and polystyrene wastes, Int. J. Sustainable Eng., vol. 14, no. 5, pp. 1049–1010, 2021. DOI: 10.1080/19397038.2021.1892234.
  • J.O. Ighalo, C.A. Igwegbe, A.G. Adeniyi, and S.A. Abdulkareem, Artificial neural network modeling of the water absorption behavior of plantain peel and bamboo fibers reinforced polystyrene composites, J. Macromol. Sci. Part B., vol. 60, no. 7, pp. 472–484, 2021. DOI: 10.1080/00222348.2020.1866282.
  • D. Onifade, J. Ighalo, A. Adeniyi, and K. Hammed, Morphological and thermal properties of polystyrene composite reinforced with biochar from plantain stalk fibre. Mater Int., vol. 2, pp. 150–156, 2020.
  • A.G. Adeniyi, D.V. Onifade, J.O. Ighalo, S.A. Abdulkareem, and M.K. Amosa, Extraction and characterization of natural fibres from plantain (Musa paradisiaca) stalk wastes, Iranian (Iranica) J Energ Environ., vol. 11, no. 2, pp. 116–121, 2020.
  • C. Ihueze, and E. Okafor, Response surface optimization of the impact strength of plantain fibre reinforced polyester for application in auto body work, J Innov Res Eng Sci., vol. 4, pp. 505–520, 2014.
  • C. Ihueze, E. Okafor, and S. Nwigbo, Optimization of hardness strengths response of plantain fibres reinforced polyester matrix composites (PFRP) applying Taguchi robust resign, Int. J Sci. Emerging Tech Vol., vol. 5, no. 1, pp. 217, 2013.
  • C. Ihueze, A. Oluleye, C.E. Okafor, C. Obele, J. Abdulrahman, and S. Obuka, Development of plantain fibres for application in design of oil and gas product systems, Petrol Technol Develop J Int J., vol. 7, no. 1, pp. 32–51, 2017.
  • C.C. Ihueze, C.E. Okafor, and C.I. Okoye, Natural fiber composite design and characterization for limit stress prediction in multiaxial stress state, J King Saud Univ Eng Sci., vol. 27, no. 2, pp. 193–206, 2015. DOI: 10.1016/j.jksues.2013.08.002.
  • C.C. Ihueze, et al., Plantain fibre particle reinforced HDPE (PFPRHDPE) for gas line piping design, Int. J. Plast. Technol., vol. 21, no. 2, pp. 370–396, 2017. DOI: 10.1007/s12588-017-9191-6.
  • C. Okafor, C. Ihueze, and A. Ujam, Optimization of tensile strengths response of plantain fibres reinforced polyester composites (PFRP) applying taguchi robust design, Innov Syst Des Eng., vol. 3, no. 7, pp. 62–76, 2012.
  • E.C. Okafor, C.C. Ihueze, and S. Nwigbo, Optimization of hardness strengths response of plantain fibres reinforced polyester matrix composites (pfrp) applying taguchi robust resign, Int J Sci Emerg Technol., vol. 5, no. 1, pp. 1–11, 2013.
  • O. Ige, and H. Danso, Physico-mechanical and thermal gravimetric analysis of adobe masonry units reinforced with plantain pseudo-stem fibres for sustainable construction, Constr. Build. Mater., vol. 273, pp. 121686, 2021. DOI: 10.1016/j.conbuildmat.2020.121686.
  • Z. Elakhame, Y. Shuaib-Babata, and I. Ambali, Development and evaluation of ceramic tiles using wastes and solid minerals, J. Eng. Res., vol. 16, no. 1, pp. 53–62, 2019. DOI: 10.24200/tjer.vol16iss1pp53-62.
  • Y. Shuaib-Babata, et al., Characterization of baruten local government area of Kwara state (Nigeria) fireclays as suitable refractory materials, Nig. J. Tech., vol. 37, no. 2, pp. 374–386, 2018. DOI: 10.4314/njt.v37i2.12.
  • Y.L. Shuaib-Babata, and A.N. Abdulrahaman, Evaluation of chemical and physico-mechanical properties of some Nigeria natural clays samples for foundry applications, Fuoyejet., vol. 3, no. 2, pp. 77–82, 2018. DOI: 10.46792/fuoyejet.v3i2.201.
  • Y. Shuaib-Babata, E. Mudaire, and C. Egwim, Suitability of using Ado Ekiti, Akerebiata (Ilorin) and Birni Gwari (Kaduna) clays for production of household ceramic water filter, J Eng Res., vol. 21, no. 2, pp. 11–25, 2016.
  • O.A. Fatuyi, and S.A. Samuel, Characterization of the physio-chemical properties of kaolinite clay bodies of akerebiata, ilorin and Ikere Ekiti, Nigeria, Int J Curr Res Mining Mater Metall Eng., vol. 1, no. 1, pp. 1–8, 2018.
  • S. Akosile, et al., Performance evaluation of locally produced ceramic filters for household water treatment in Nigeria, Sci. Afr., vol. 7, pp. e00218, 2020. DOI: 10.1016/j.sciaf.2019.e00218.
  • A.G. Adeniyi, A.S. Adeoye, J.O. Ighalo, and D.V. Onifade, FEA of effective elastic properties of banana fiber-reinforced polystyrene composite, Mech. Adv. Mater. Struct., vol. 28, no. 18, pp. 1869–1869, 2021. DOI: 10.1080/15376494.2020.1712628.
  • S. Abdulkareem, M.K. Amosa, and A. Adeniyi, Synthesis and structural analysis of aluminium-filled polystyrene composites from recycled wastes, Erem., vol. 74, no. 2, pp. 58–66, 2018. DOI: 10.5755/j01.erem.74.2.19680.
  • S. Abdulkareem, J. Ighalo, and A. Adeniyi, Evaluation of the electrical characteristics of recycled iron reinforced polystyrene composites, Iran J Energ Environ., vol. 12, no. 2, pp. 125–130, 2021.
  • A.E.K. Qaiss, R. Bouhfid, and H. Essabir, Natural Fibers reinforced polymeric matrix: thermal, mechanical and interfacial properties. In: K. Hakeem, M. Jawaid, U. Rashid (Eds.), Biomass and Bioenergy, pp. 225–245, Cham: Springer, 2014. DOI: 10.1007/978-3-319-07641-6_14.
  • R.S. Odera, O.D. Okechukwu, E.M. Ezeh, M.C. Menkiti, and P.C. Agu, The exchange of Musa spp. fibre in composite fabrication: a systematic review, Bull. Natl. Res. Cent., vol. 45, no. 1, pp. 1–18, 2021. DOI: 10.1186/s42269-021-00604-z.
  • E.A. Anakhu, M.A. Anetokhe, Y. Lukeman, and AIbrahim Suleiman, Isolation and characterization of cellulose microfiber from plantain peels, Niger Res J Chem Sci., vol. 8, no. 2, pp. 150–157, 2020.
  • M. Tanniru, Q. Yuan, and R. Misra, On significant retention of impact strength in clay–reinforced high-density polyethylene (HDPE) nanocomposites, Polymer., vol. 47, no. 6, pp. 2133–2146, 2006. DOI: 10.1016/j.polymer.2006.01.063.
  • S. Peter, The fundamentals of piping design, In Metallic Materials for Piping Components, vol. 1, pp. 115–136, 2007.
  • F. Arrakhiz, K. Benmoussa, R. Bouhfid, and A. Qaiss, Pine cone fiber/clay hybrid composite: Mechanical and thermal properties, Mater Des., vol. 50, pp. 376–381, 2013. DOI: 10.1016/j.matdes.2013.03.033.
  • S.K. Sinha, T. Song, X. Wan, and Y. Tong, Scratch and normal hardness characteristics of polyamide 6/nano-clay composite, Wear., vol. 266, no. 7–8, pp. 814–821, 2009. DOI: 10.1016/j.wear.2008.12.010.
  • S.C. Chin, K.F. Tee, F.S. Tong, H.R. Ong, and J. Gimbun, Thermal and mechanical properties of bamboo fiber reinforced composites, Mater. Today Commun., vol. 23, pp. 100876, 2020. DOI: 10.1016/j.mtcomm.2019.100876.
  • K. Zhang, F. Wang, W. Liang, Z. Wang, Z. Duan, and B. Yang, Thermal and mechanical properties of bamboo fiber reinforced epoxy composites, Polymers., vol. 10, no. 6, pp. 608, 2018. DOI: 10.3390/polym10060608.
  • T.S. Reddy, P.R.S. Reddy, and V. Madhu, Low velocity impact studies of E-glass/epoxy composite laminates at different thicknesses and temperatures, Defence Technol., vol. 15, no. 6, pp. 897–904, 2019. DOI: 10.1016/j.dt.2019.02.003.
  • K. Masenelli‐Varlot, E. Reynaud, G. Vigier, and J. Varlet, Mechanical properties of clay‐reinforced polyamide, J. Polym. Sci. B Polym. Phys., vol. 40, no. 3, pp. 272–283, 2002. DOI: 10.1002/polb.10088.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.