299
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and numerical analysis of the Poisson’s ratio on soft polyurethane foams under tensile and cyclic compression load

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 7172-7188 | Received 06 Jul 2021, Accepted 12 Oct 2021, Published online: 25 Oct 2021

References

  • H. M. C. C. Somarathna, S. N. Raman, D. Mohotti, A. A. Mutalib, and K. H. Badri, The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review, Constr. Build. Mater., vol. 190, pp. 995–1014, 2018. DOI: 10.1016/j.conbuildmat.2018.09.166.
  • N. V. Gama, A. Ferreira, and A. Barros-Timmons, Polyurethane foams: Past, present, and future, Materials, vol. 11, no. 10, p. 1841, 2018. DOI: 10.3390/ma11101841.
  • C. Ge, L. Priyadarshini, D. Cormier, L. Pan, and J. Tuber, A preliminary study of cushion properties of a 3D printed thermoplastic polyurethane Kelvin foam, Packag. Technol. Sci., vol. 31, no. 5, pp. 361–368, 2018. DOI: 10.1002/pts.2330.
  • C. Jackson, A. J. Emck, M. J. Huston, P. C. Jarvis, and A. Firmin, A simple comparison of the characteristics of energy-absorbing foams for use in safety cushions in glider cockpit environments, Tech. Soar., vol. 33, no. 2, pp. 47–53, 2009.
  • M. Jankowski and M. Kotełko, Dynamic compression tests of a polyurethane flexible foam as a step in modelling impact of the head to the vehicle seat head restraint, FME Trans., vol. 38, pp. 121–127, 2010.
  • E. Linul, L. Marsavina, T. Voiconi, and T. Sadowski, Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression, J. Phys. Conf. Ser., vol. 451, no. 1, p. 012002, 2013. DOI: 10.1088/1742-6596/451/1/012002.
  • N. J. Mills, C. Fitzgerald, A. Gilchrist, and R. Verdejo, Polymer foams for personal protection: Cushions, shoes and helmets, Compos. Sci. Technol., vol. 63, no. 16, pp. 2389–2400, 2003. DOI: 10.1016/S0266-3538(03)00272-0.
  • C. Liu, G. Qi, and P. Li, Crashworthy characteristics of sustainable thin-walled tubes: A study on recycled beverage cans, Mech. Adv. Mater. Struct., pp. 1–21, 2021. DOI: 10.1080/15376494.2021.1891588.
  • D. V. W. M. de Vries, Characterization of Polymeric Foams, Eindhoven University of Technology, Eindhoven, p. 34, 2009.
  • L. J. Gibson and M. F. Ashby, 1997. Cellular Solids, Cambridge University Press, Cambridge, UK. DOI: 10.1017/CBO9781139878326.
  • N. J. Mills, Polymer Foams Handbook: Engineering and Biomechanics Applications and Design Guide, Oxford: Butterworth-Heinemann, p. 531, 2007.
  • A. T. Huber and L. J. Gibson, Anisotropy of foams, J. Mater. Sci., vol. 23, no. 8, pp. 3031–3040, 1988. DOI: 10.1007/BF00547486.
  • K. Bouchahdane, N. Ouelaa, and A. Belaadi, Static and fatigue compression behaviour of conventional and auxetic open-cell foam, Mech. Adv. Mater. Struct., pp. 1–14, 2021. DOI: 10.1080/15376494.2021.1972496.
  • B. Sanborn and B. Song, Poisson’s ratio of a hyperelastic foam under quasi-static and dynamic loading, Int. J. Impact Eng., vol. 123, no. 1, pp. 48–55, 2019. DOI: 10.1016/j.ijimpeng.2018.06.001.
  • G. N. Greaves, A. L. Greer, R. S. Lakes, and T. Rouxel, Poisson's ratio and modern materials, Nat. Mater., vol. 10, no. 11, pp. 823–837, 2011. DOI: 10.1038/nmat3134.
  • C. W. Smith, R. J. Wootton, and K. E. Evans, Interpretation of experimental data for Poisson’s ratio of highly nonlinear materials, Exp. Mech., vol. 39, no. 4, pp. 356–362, 1999. DOI: 10.1007/BF02329817.
  • S. Cui, et al., Mechanical metamaterials foams with tunable negative Poisson's ratio for enhanced energy absorption and damage resistance, Materials (Basel), vol. 11, no. 10, p. 1869, 2018. DOI: 10.3390/ma11101869.
  • S. Koumlis and L. Lamberson, Strain rate dependent compressive response of open cell polyurethane foam, Exp. Mech., vol. 59, no. 7, pp. 1087–1103, 2019. DOI: 10.1007/s11340-019-00521-3.
  • F. Pierron, Identification of Poisson’s ratios of standard and auxetic low-density polymeric foams from full-field measurements, J Strain Anal Eng Des., vol. 45, no. 4, pp. 233–253, 2010. DOI: 10.1243/03093247JSA613.
  • O. Duncan, et al., Effects of heat exposure and volumetric compression on Poisson’s ratios, Young’s moduli, and polymeric composition during thermo-mechanical conversion of auxetic open cell polyurethane foam, Phys. Status Solidi B, vol. 256, no. 1, p. 1800393, 2019. DOI: 10.1002/pssb.201800393.
  • R. H. Pritchard, P. Lava, D. Debruyne, and E. M. Terentjev, Precise determination of the Poisson ratio in soft materials with 2D digital image correlation, Soft Matter, vol. 9, no. 26, pp. 6037–6045, 2013. DOI: 10.1039/c3sm50901j.
  • J. Lisiecki, T. Błażejewicz, S. Kłysz, G. Gmurczyk, P. Reymer, and G. Mikułowski, Tests of polyurethane foams with negative Poisson’s ratio, Phys. Status Solidi B, vol. 250, no. 10, pp. 1988–1995, 2013. DOI: 10.1002/pssb.201384232.
  • J. P. Brincat, K. M. Azzopardi, A. Buttigieg, F. Scarpa, J. N. Grima, and R. Gatt, Foams as 3D perforated systems: An analysis of their Poisson’s ratios under compression, Phys. Status Solidi B, vol. 251, no. 11, pp. 2233–2238, 2014. DOI: 10.1002/pssb.201484262.
  • F. Pierron, S. A. Mcdonald, D. Hollis, J. Fu, P. J. Withers, and A. Alderson, Comparison of the mechanical behaviour of standard and auxetic foams by X-ray computed tomography and digital volume correlation, Strain, vol. 49, no. 6, pp. 467–482, 2013. DOI: 10.1111/str.12053.
  • R. D. Widdle, A. K. Bajaj, and P. Davies, Measurement of the Poisson’s ratio of flexible polyurethane foam and its influence on a uniaxial compression model, Int. J. Eng. Sci., vol. 46, no. 1, pp. 31–49, 2008. DOI: 10.1016/j.ijengsci.2007.09.002.
  • T. C. Chu, W. F. Ranson, and M. A. Sutton, Applications of digital-image-correlation techniques to experimental mechanics, Exp. Mech., vol. 25, no. 3, pp. 232–244, 1985. DOI: 10.1007/BF02325092.
  • T. R. Walter, A. W. Richards, and G. Subhash, A unified phenomenological model for tensile and compressive response of polymeric foams, J. Eng. Mater. Technol., Trans. ASME, vol. 131, no. 1, pp. 0110091–0110096, 2009. DOI: 10.1115/1.3026556.
  • A. M. Korsunsky, M. Sebastiani, and E. Bemporad, Residual stress evaluation at the micrometer scale: Analysis of thin coatings by FIB milling and digital image correlation, Surf. Coat. Technol., vol. 205, no. 7, pp. 2393–2403, 2010. DOI: 10.1016/j.surfcoat.2010.09.033.
  • W. A. Take, Thirty-sixth Canadian geotechnical colloquium: Advances in visualization of geotechnical processes through digital image correlation, Can. Geotech. J., vol. 52, no. 9, pp. 1199–1220, 2015. DOI: 10.1139/cgj-2014-0080.
  • B. Koohbor, S. Mallon, A. Kidane, and W. Y. Lu, The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading, Polym. Test., vol. 44, pp. 112–124, 2015. DOI: 10.1016/j.polymertesting.2015.03.016.
  • S. Hensley, M. Christensen, S. Small, D. Archer, E. Lakes, and R. Rogge, Digital image correlation techniques for strain measurement in a variety of biomechanical test models, Acta Bioeng. Biomech., vol. 19, no. 3, pp. 187–195, 2017. DOI: 10.5277/ABB-00785-2016-04.
  • S. Kishimoto, Q. Wang, Y. Tanaka, and Y. Kagawa, Compressive mechanical properties of closed-cell aluminum foam-polymer composites, Compos. B: Eng., vol. 64, pp. 43–49, 2014. DOI: 10.1016/j.compositesb.2014.04.009.
  • S. A. McDonald, G. Dedreuil-Monet, Y. T. Yao, A. Alderson, and P. J. Withers, In situ 3D X-ray microtomography study comparing auxetic and non-auxetic polymeric foams under tension, Phys. Stat. Sol. B, vol. 248, no. 1, pp. 45–51, 2011. DOI: 10.1002/pssb.201083975.
  • L. Marsavina, D. Constantinescu, E. Linul, T. Voiconi, D. Apostol, and T. Sadowski, Damage identification and influence on mechanical properties of closed cell rigid foams, 13th International Conference on Fracture, ICF 2013, vol. 4, 2013.
  • T. Voiconi, E. Linul, L. Marsavina, T. Sadowski, and M. Kneć, Determination of flexural properties of rigid PUR foams using digital image correlation, SSP, vol. 216, pp. 116–121, 2014. DOI: 10.4028/www.scientific.net/SSP.216.116.
  • D. A. Apostol, D. M. Constantinescu, L. Marşavina, and E. Linul, Analysis of deformation bands in polyurethane foams, KEM, vol. 601, pp. 250–253, 2014. DOI: 10.4028/www.scientific.net/KEM.601.250.
  • Y. Wang and A. M. Cuitiño, Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation, Int. J. Solids Struct., vol. 39, no. 13–14, pp. 3777–3796, 2002. DOI: 10.1016/S0020-7683(02)00176-2.
  • F. Hild, B. Raka, M. Baudequin, S. Roux, and F. Cantelaube, Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation, Appl. Opt., vol. 41, no. 32, pp. 6815–6828, 2002. DOI: 10.1364/AO.41.006815.
  • R. Belda, R. Megías, N. Feito, A. Vercher-Martínez, and E. Giner, Some practical considerations for compression failure characterization of open-cell polyurethane foams using digital image correlation, Sensors (Switzerland), vol. 20, no. 15, pp. 4141, 2020. DOI: 10.3390/s20154141.
  • B. Koohbor, A. Blourchian, K. Z. Uddin, and G. Youssef, Characterization of energy absorption and strain rate sensitivity of a novel elastomeric polyurea foam, Adv. Eng. Mater., vol. 23, no. 1, p. 2000797, 2021. DOI: 10.1002/adem.20.
  • F. Pierron, Mechanical properties of low density polymeric foams obtained from full-field measurements, EPJ Web Conf., vol. 6, pp. 1–8, 2010. DOI: 10.1051/epjconf/20100637006.
  • B. Guo, F. Pierron, and R. Rotinat, Identification of low density polyurethane foam properties by DIC and the virtual fields method, ICEM 2008 International Conference of Experimental Mechanics 2008, vol. 737554, 2008. DOI: 10.1117/12.839331.
  • W. H. El-Ratal and P. K. Mallick, Elastic response of flexible polyurethane foams in uniaxial tension, J. Eng. Mater. Technol., vol. 118, no. 2, pp. 157–161, 1996. DOI: 10.1115/1.2804881.
  • H. Jmal, R. Dupuis, and E. Aubry, Quasi-static behavior identification of polyurethane foam using a memory integer model and the difference-forces method, J. Cell. Plast., vol. 47, no. 5, pp. 447–465, 2011. DOI: 10.1177/0021955X11406101.
  • G. Pampolini and M. Raous, Nonlinear elasticity, viscosity and damage in open-cell polymeric foams, Arch. Appl. Mech., vol. 84, no. 12, pp. 1861–1881, 2014. DOI: 10.1007/s00419-014-0891-5.
  • W. Y. Lu, M. Neidigk, and N. Wyatt, Cyclic loading experiment for characterizing foam viscoelastic behavior, Conference Proceedings of the Society for Experimental Mechanics Series, vol. 4, pp. 135–144, 2017. DOI: 10.1007/978-3-319-42028-8_16.
  • UNI EN ISO 1798:2008, Flexible cellular polymeric materials-determination of tensile strength and elongation at break, 2008.
  • UNI EN ISO 3386-2:1997/Amd.1:2010, Flexible cellular polymeric materials-determination of stress-strain characteristics in compression, 2010.
  • P. Bing, D. W, and Y. Xia, Incremental calculation for large deformation measurement using reliability-guided digital image correlation, Opt. Lasers Eng., vol. 50, no. 4, pp. 586–592, 2012. DOI: 10.1016/j.optlaseng.2011.05.005.
  • M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, The effect of out-of-plane motion on 2D and 3D digital image correlation measurements, Opt. Lasers Eng., vol. 46, no. 10, pp. 746–757, 2008. DOI: 10.1016/j.optlaseng.2008.05.005.
  • C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., vol. 27, no. 3, pp. 379–423, 1948. DOI: 10.1002/j.1538-7305.1948.tb01338.x.
  • Y. C. Fung, Foundations of solid mechanics, J. R. Aeronaut. Soc., vol. 70, no. 663, p. 525, 1968. DOI: 10.1017/S0001924000058632.
  • B. Banerjee, B. Kraus, and R. Das, Characterization of an anisotropic low-density closed-cell polyurethane foam, 2015. DOI: 10.13140/RG.2.1.2971.2088.
  • J. B. Choi and R. S. Lakes, Non-linear properties of polymer cellular materials with a negative Poisson’s ratio, J. Mater. Sci., vol. 27, no. 17, pp. 4678–4684, 1992. DOI: 10.1007/BF01166005.
  • M. Smith, ABAQUS/Standard User's Manual, Version 6.9, Dassault Systèmes Simulia Corp, Providence, RI, 2009.
  • R. W. Ogden, Large deformation isotropic elasticity: On the correlation of theory and experiment for compressible rubberlike solids, R. Soc., vol. 328, no. 1575, pp. 567–583, 1972. DOI: 10.1098/rspa.1972.0096.
  • X. Y. Liu, et al., Quality assessment of speckle patterns for digital image correlation by Shannon entropy, Optik, vol. 126, no. 23, pp. 4206–4211, 2015. DOI: 10.1016/j.ijleo.2015.08.034.
  • C. Casavola, L. Del Core, V. Moramarco, G. Pappalettera, and M. Patronelli, Full-field mechanical characterization of polyurethane foams under large deformations by digital image correlation, Mech. Adv. Mater. Struct., pp. 1–16, 2021. DOI: 10.1080/15376494.2021.1905915.
  • J. G. Murphy and G. A. Rogerson, A method to model simple tension experiments using finite elasticity theory with an application to some polyurethane foams, Int. J. Eng. Sci., vol. 40, no. 5, pp. 499–510, 2002. DOI: 10.1016/S0020-7225(01)00079-9.
  • S. Demirel and B. E. Tuna, Evaluation of the cyclic fatigue performance of polyurethane foam in different density and category, Polym. Test., vol. 76, pp. 146–153, 2019. DOI: 10.1016/j.polymertesting.2019.03.019.
  • N. J. Mills, Finite element models for the viscoelasticity of open-cell polyurethane foam, Cell. Polym., vol. 25, no. 5, pp. 293–316, 2006. DOI: 10.1177/026248930602500502.
  • Y. Shen, F. Golnaraghi, and A. Plumtree, Modelling compressive cyclic stress-strain behaviour of structural foam, Int. J. Fatigue, vol. 23, no. 6, pp. 491–497, 2001. DOI: 10.1016/S0142(01)00014-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.