430
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Crashworthiness optimization of a multicellular thin-walled tube with triangular cells

, , ORCID Icon, , &
Pages 7277-7293 | Received 03 Sep 2021, Accepted 15 Oct 2021, Published online: 19 Nov 2021

References

  • S. Yao, Y. Tian, Z. Li, F. Yang, and P. Xu, Crushing characteristic of polygonal tubes with hierarchical triangular cells, Thin-Walled Struct., vol. 157, pp. 107031, 2020. DOI: 10.1016/j.tws.2020.107031.
  • G. Guangjun, The energy distribution of a train impact process based on the active–passive energy-absorption method, Transp. Saf. Environ., vol. 1, no. 1, pp. 54–67, 2019. DOI: 10.1093/transp/tdz002.
  • S. Xie, H. Wang, C. Yang, H. Zhou, and Z. Feng, Mechanical properties of combined structures of stacked multilayer Nomex® honeycombs, Thin-Walled Struct., vol. 151, pp. 106729, 2020. DOI: 10.1016/j.tws.2020.106729.
  • J. Banerjee, Review of the dynamic stiffness method for free-vibration analysis of beams, Transp. Saf. Environ., vol. 1, no. 2, pp. 106–116, 2019. DOI: 10.1093/tse/tdz005.
  • F. Li, N.S. Liu, H.G. Li, B. Zhang, S.W. Tian, M.G. Tan, and B. Sandoz, A review of neck injury and protection in vehicle accidents, Transp. Saf. Environ., vol. 1, no. 2, pp. 89–105, 2019. DOI: 10.1093/tse/tdz012.
  • S. Xie, P. Chen, N. Wang, J. Wang, and X. Du, Crashworthiness study of circular tubes subjected to radial extrusion under quasi-static loading, Int. J. Mech. Sci., vol. 192, pp. 106128, 2021. DOI: 10.1016/j.ijmecsci.2020.106128.
  • Z. Li, W. Ma, H. Zhu, G. Deng, L. Hou, P. Xu, and S. Yao, Energy absorption prediction and optimization of corrugation-reinforced multicell square tubes based on machine learning, Mech. Adv. Mater. Struct., pp. 1–19, 2021. DOI: 10.1080/15376494.2021.1958032.
  • S. Yao, K. Yan, S. Lu, and P. Xu, Equivalence study involving rail vehicle collision test conditions, Proc. Inst. Mech. Eng. F J. Rail Rapid Transit., vol. 233, no. 1, pp. 73–89, 2019. DOI: 10.1177/0954409718779940.
  • S. Li and S. Reid, On the symmetry conditions for laminated fibre-reinforced composite structures, Int. J. Solids Struct., vol. 29, no. 23, pp. 2867–2880, 1992. DOI: 10.1016/0020-7683(92)90145-J.
  • M. Emadi, H. Beheshti, and M. Heidari-Rarani, Thickness effect study on the crushing characteristics of aluminum and composite tubes: Numerical analysis and multi-objective optimization, Mech. Adv. Mater. Struct., pp. 1–10, 2020. DOI: 10.1080/15376494.2020.1747667.
  • C.W. Isaac and C. Ezekwem, A review of the crashworthiness performance of energy absorbing composite structure within the context of materials, manufacturing and maintenance for sustainability, Compos. Struct., vol. 257, pp. 113081, 2020.
  • P. Hao and J. Du, Energy absorption characteristics of bio-inspired honeycomb column thin-walled structure under impact loading, J. Mech. Behav. Biomed. Mater., vol. 79, pp. 301–308, 2018. DOI: 10.1016/j.jmbbm.2018.01.001.
  • V. Patel, G. Tiwari, and R. Dumpala, Crashworthiness analysis of multi-configuration thin walled co-axial frusta tube structures under quasi-static loading, Thin-Walled Struct., vol. 154, pp. 106872, 2020. DOI: 10.1016/j.tws.2020.106872.
  • W. Ma, S. Xie, Z. Li, Z. Feng, and K. Jing, Crushing behaviors of horse-hoof-wall inspired corrugated tubes under multiple loading conditions, Mech. Adv. Mater. Struct., pp. 1–25, 2021. DOI: 10.1080/15376494.2021.1892245.
  • Q. Wang, S. Li, Z. Liu, G. Wu, J. Lei, and Z. Wang, Geometric design and energy absorption of a new deployable cylinder tube, Mech. Adv. Mater. Struct., pp. 1–14, 2020. DOI: 10.1080/15376494.2020.1846099.
  • K. Falkowicz and H. Debski, Stability analysis of thin-walled composite plate in unsymmetrical configuration subjected to axial load, Thin-Walled Struct., vol. 158, pp. 107203, 2021. DOI: 10.1016/j.tws.2020.107203.
  • G. Nagel and D. Thambiratnam, A numerical study on the impact response and energy absorption of tapered thin-walled tubes, Int. J. Mech. Sci., vol. 46, no. 2, pp. 201–216, 2004. DOI: 10.1016/j.ijmecsci.2004.03.006.
  • R.Y. Yao, B. Zhang, G.S. Yin, and Z.Y. Zhao, Energy absorption behaviors of foam-filled holed tube subjected to axial crushing: Experimental and theoretical investigations, Mech. Adv. Mater. Struct., pp. 1–14, 2020. DOI: 10.1080/15376494.2020.1745968.
  • A. Baroutaji, E. Morris, and A.G. Olabi, Quasi-static response and multi-objective crashworthiness optimization of oblong tube under lateral loading, Thin-Walled Struct., vol. 82, pp. 262–277, 2014. DOI: 10.1016/j.tws.2014.03.012.
  • G. Sun, X. Guo, S. Li, D. Ruan, and Q. Li, Comparative study on aluminum/GFRP/CFRP tubes for oblique lateral crushing, Thin-Walled Struct., vol. 152, pp. 106420, 2020. DOI: 10.1016/j.tws.2019.106420.
  • A. Mamalis, D. Manolakos, A. Baldoukas, and G. Viegelahn, Energy dissipation and associated failure modes when axially loading polygonal thin-walled cylinders, Thin-Walled Struct., vol. 12, no. 1, pp. 17–34, 1991. DOI: 10.1016/0263-8231(91)90024-D.
  • S. Hou, Q. Li, S. Long, X. Yang, and W. Li, Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria, Finite Elem. Anal. Des., vol. 43, no. 6–7, pp. 555–565, 2007. DOI: 10.1016/j.finel.2006.12.008.
  • Z. Fan, G. Lu, and K. Liu, Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes, Eng. Struct., vol. 55, pp. 80–89, 2013. DOI: 10.1016/j.engstruct.2011.09.020.
  • W. Chen and T. Wierzbicki, Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption, Thin-Walled Struct., vol. 39, no. 4, pp. 287–306, 2001. DOI: 10.1016/S0263-8231(01)00006-4.
  • T. Tran, S. Hou, X. Han, N. Nguyen, and M. Chau, Theoretical prediction and crashworthiness optimization of multi-cell square tubes under oblique impact loading, Int. J. Mech. Sci., vol. 89, pp. 177–193, 2014. DOI: 10.1016/j.ijmecsci.2014.08.027.
  • T. Tran, S. Hou, X. Han, and M. Chau, Crushing analysis and numerical optimization of angle element structures under axial impact loading, Compos. Struct., vol. 119, pp. 422–435, 2015. DOI: 10.1016/j.compstruct.2014.09.019.
  • M. Krolak, K. Kowal-Michalska, R. Mania, and J. Swiniarski, Experimental tests of stability and load carrying capacity of compressed thin-walled multi-cell columns of triangular cross-section, Thin-Walled Struct., vol. 45, no. 10–11, pp. 883–887, 2007. DOI: 10.1016/j.tws.2007.08.041.
  • P.B. Su, B. Han, M. Yang, Z.H. Wei, Z.Y. Zhao, Q.C. Zhang, Q. Zhang, K.K. Qin, and T.J. Lu, Axial compressive collapse of ultralight corrugated sandwich cylindrical shells, Mater. Des., vol. 160, pp. 325–337, 2018. DOI: 10.1016/j.matdes.2018.09.034.
  • C. Gong, Z. Bai, Y. Wang, and L. Zhang, On the crashworthiness performance of novel hierarchical multi-cell tubes under axial loading, Int. J. Mech. Sci., vol. 206, pp. 106599, 2021. DOI: 10.1016/j.ijmecsci.2021.106599.
  • Z. Wang, Z. Li, C. Shi, and W. Zhou, Mechanical performance of vertex-based hierarchical vs square thin-walled multi-cell structure, Thin-Walled Struct., vol. 134, pp. 102–110, 2019. DOI: 10.1016/j.tws.2018.09.017.
  • W. Li, Y. Luo, M. Li, F. Sun, and H. Fan, A more weight-efficient hierarchical hexagonal multi-cell tubular absorber, Int. J. Mech. Sci., vol. 140, pp. 241–249, 2018. DOI: 10.1016/j.ijmecsci.2018.03.006.
  • W. Ma, Z. Li, and S. Xie, Crashworthiness analysis of thin-walled bio-inspired multi-cell corrugated tubes under quasi-static axial loading, Eng. Struct., vol. 204, pp. 110069, 2020. DOI: 10.1016/j.engstruct.2019.110069.
  • W. Ma, S. Xie, and Z. Li, Mechanical performance of bio-inspired corrugated tubes with varying vertex configurations, Int. J. Mech. Sci., vol. 172, pp. 105399, 2020. DOI: 10.1016/j.ijmecsci.2019.105399.
  • D. Hu, Y. Wang, B. Song, L. Dang, and Z. Zhang, Energy-absorption characteristics of a bionic honeycomb tubular nested structure inspired by bamboo under axial crushing, Compos. B Eng., vol. 162, pp. 21–32, 2019. DOI: 10.1016/j.compositesb.2018.10.095.
  • H. Yin, Y. Xiao, G. Wen, Q. Qing, and X. Wu, Crushing analysis and multi-objective optimization design for bionic thin-walled structure, Mater. Des., vol. 87, pp. 825–834, 2015. DOI: 10.1016/j.matdes.2015.08.095.
  • T. Zhang, A. Wang, Q. Wang, and F. Guan, Bending characteristics analysis and lightweight design of a bionic beam inspired by bamboo structures, Thin-Walled Struct., vol. 142, pp. 476–498, 2019. DOI: 10.1016/j.tws.2019.04.043.
  • X. Xu, Y. Zhang, J. Wang, F. Jiang, and C.H. Wang, Crashworthiness design of novel hierarchical hexagonal columns, Compos. Struct., vol. 194, pp. 36–48, 2018. DOI: 10.1016/j.compstruct.2018.03.099.
  • P. Fratzl and R. Weinkamer, Nature’s hierarchical materials, Prog. Mater. Sci., vol. 52, no. 8, pp. 1263–1334, 2007. DOI: 10.1016/j.pmatsci.2007.06.001.
  • L. Zhang, Y. Zhong, W. Tan, C. Gong, Y. Hu, and Z. Bai, Crushing characteristics of bionic thin-walled tubes inspired by bamboo and beetle forewing, Mech. Adv. Mater. Struct., pp. 1–16, 2021. DOI: 10.1080/15376494.2020.1849880.
  • M. Zou, S. Xu, C. Wei, H. Wang, and Z. Liu, A bionic method for the crashworthiness design of thin-walled structures inspired by bamboo, Thin-Walled Struct., vol. 101, pp. 222–230, 2016. DOI: 10.1016/j.tws.2015.12.023.
  • S. Amada and S. Untao, Fracture properties of bamboo, Compos. B Eng., vol. 32, no. 5, pp. 451–459, 2001. DOI: 10.1016/S1359-8368(01)00022-1.
  • N. M. Patel, Crashworthiness Design Using Topology Optimization, PhD thesis, University of Notre Dame, USA, 2007.
  • Z. Li, W. Ma, S. Yao, and P. Xu, Crashworthiness performance of corrugation- reinforced multicell tubular structures, Int. J. Mech. Sci., vol. 190, pp. 106038, 2021. DOI: 10.1016/j.ijmecsci.2020.106038.
  • Z. Li, W. Ma, P. Xu, and S. Yao, Crushing behavior of circumferentially corrugated square tube with different cross inner ribs, Thin-Walled Struct., vol. 144, pp. 106370, 2019. DOI: 10.1016/j.tws.2019.106370.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.