285
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Cancelation of acoustic scattering from a smart hybrid ERF/PZT-based double‐wall composite spherical shell structure

&
Pages 7294-7315 | Received 12 Sep 2021, Accepted 15 Oct 2021, Published online: 09 Nov 2021

References

  • M. C. Junger, Sound scattering by thin elastic shells, J. Acoust. Soc. Am., vol. 24, no. 4, pp. 366–373, 1952. DOI: 10.1121/1.1906905.
  • B. Aronov, D. A. Brown, C. L. Bachand, and X. Yan, Analysis of unidirectional broadband piezoelectric spherical shell transducers for underwater acoustics, J. Acoust. Soc. Am., vol. 131, no. 3, pp. 2079–2090, 2012. DOI: 10.1121/1.3675961.
  • D. Teng, H. Yang, and G. Zhu, Design and test about high sensitivity thin shell piezoelectric hollow sphere hydrophone. In: Ocean. 2017-Anchorage, IEEE, Anchorage, AK, USA, 2017, pp. 1–6.
  • S. Sadeghpour, S. Meyers, J.-P. Kruth, J. Vleugels, M. Kraft, and R. Puers, Resonating shell: A spherical-omnidirectional ultrasound transducer for underwater sensor networks, Sensors., vol. 19, no. 4, pp. 757, 2019. DOI: 10.3390/s19040757.
  • G. S. Sammelmann, and R. H. Hackman, The acoustic scattering by a submerged, spherical shell. II: The high-frequency region and the thickness quasiresonance, J. Acoust. Soc. Am., vol. 89, no. 5, pp. 2096–2103, 1991. DOI: 10.1121/1.400902.
  • H. Überall, A. C. Ahyi, P. K. Raju, I. K. Bjørnø, and L. Bjørnø, Circumferential-wave phase velocities for empty, fluid-immersed spherical metal shells, J. Acoust. Soc. Am., vol. 112, no. 6, pp. 2713–2720, 2002. DOI: 10.1121/1.1512290.
  • E. J. Avital, N. D. Bholah, G. C. Giovanelli, and T. Miloh, Sound scattering by an elastic spherical shell and its cancellation using a multi-pole approach, Arch. Acoust., vol. 42, no. 4, pp. 697–705, 2017. DOI: 10.1515/aoa-2017-0072.
  • Y. Li, G. Li, B. Zhao, and J. Liu, Influence of double hull structure on the effects of underwater explosion, Chuanbo Lixue, J. Sh. Mech., vol. 10, pp. 127–134, 2006.
  • W. Huabing, P. Zilong, W. Kangle, and C. Rong, Research on the acoustic and vibration characteristics of underwater double-shell model based on hybrid FE-SEA method, Chinese J. Appl. Mech., vol. 23, pp. 5–14, 2014.
  • Y. Li, M. Wang, and W. Li, Sound scattering of double concentric elastic spherical shell with multilayered medium cloak. In: 2017 IEEE Underw, Technol., IEEE., Busan, Korea (South), pp. 1–6, 2017.
  • H. Huang, Transient response of two fluid-coupled spherical elastic shells to an incident pressure pulse, J. Acoust. Soc. Am., vol. 65, no. 4, pp. 881–887, 1979. DOI: 10.1121/1.382590.
  • W. Tang, and J. Fan, Echoes from double elastic spherical shell in water, Acta Acustica-Peking., vol. 24, pp. 174–182, 1999.
  • M.-S. Zou, S.-X. Liu, L.-W. Jiang, and H. Huang, A mixed analytical-numerical method for the acoustic radiation of a spherical double shell in the ocean-acoustic environment, Ocean Eng., vol. 199, pp. 107040, 2020. DOI: 10.1016/j.oceaneng.2020.107040.
  • J. Liu, H. Guo, and T. Wang, A review of acoustic metamaterials and phononic crystals, Crystals., vol. 10, no. 4, pp. 305, 2020. DOI: 10.3390/cryst10040305.
  • X. Nie, Y. Chen, and X. Liu, Scattering analysis and optimization of spherical acoustic cloak with unideal pentamode material, Acta Mech. Solida Sin., vol. 33, no. 3, pp. 347–360, 2020. DOI: 10.1007/s10338-019-00139-x.
  • R. C. McPhedran, and G. W. Milton, A review of anomalous resonance, its associated cloaking, and superlensing, Comptes Rendus. Phys., vol. 21, no. 4–5, pp. 409–423, 2020. DOI: 10.5802/crphys.6.
  • M. D. Guild, A. Alu, and M. R. Haberman, Cancellation of acoustic scattering from an elastic sphere, J. Acoust. Soc. Am., vol. 129, no. 3, pp. 1355–1365, 2011. DOI: 10.1121/1.3552876.
  • D. Eggler, M. Karimi, and N. Kessissoglou, Active acoustic cloaking in a convected flow field, J. Acoust. Soc. Am., vol. 146, no. 1, pp. 586–594, 2019. DOI: 10.1121/1.5119225.
  • D. Eggler, H. Chung, F. Montiel, J. Pan, and N. Kessissoglou, Active noise cloaking of 2D cylindrical shells, Wave Motion., vol. 87, pp. 106–122, 2019. DOI: 10.1016/j.wavemoti.2018.08.006.
  • M. Ramadan, W. Akl, T. Elnady, and A. Elsabbagh, Finite-element modeling of an acoustic cloak for three-dimensional flexible shells with structural excitation, Appl. Phys. A., vol. 103, no. 3, pp. 641–644, 2011. DOI: 10.1007/s00339-011-6247-x.
  • M. D. Guild, M. R. Haberman, and A. Alù, Plasmonic-type acoustic cloak made of a bilaminate shell, Phys. Rev. B., vol. 86, no. 10, pp. 104302, 2012. DOI: 10.1103/PhysRevB.86.104302.
  • M. D. Guild, A. Alù, and M. R. Haberman, Cloaking of an acoustic sensor using scattering cancellation, Appl. Phys. Lett., vol. 105, no. 2, pp. 023510, 2014. DOI: 10.1063/1.4890614.
  • C. L. Scandrett, and A. M. Vieira, Fluid-structure effects of cloaking a submerged spherical shell, J. Acoust. Soc. Am., vol. 134, no. 3, pp. 1908–1919, 2013. DOI: 10.1121/1.4816492.
  • E. J. Avital, and T. Miloh, Sound scattering and its cancellation by an elastic spherical shell in free space and near a free surface, Wave Motion., vol. 55, pp. 35–47, 2015. DOI: 10.1016/j.wavemoti.2014.12.009.
  • M. Rajabi, and A. Mojahed, Active acoustic cloaking spherical shells, Acta Acust. United with Acust., vol. 104, no. 1, pp. 5–12, 2018. DOI: 10.3813/AAA.919140.
  • S. M. Hasheminejad, and N. Safari, Dynamic viscoelastic effects on sound wave diffraction by spherical and cylindrical shells submerged in and filled with viscous compressible fluids, Shock Vib., vol. 10, no. 5–6, pp. 339–363, 2003. DOI: 10.1155/2003/434612.
  • S. M. Hasheminejad, and S. Mehdizadeh, Acoustic performance of a multi-layer close-fitting hemispherical enclosure, Noise Control Eng. J., vol. 54, no. 2, pp. 86, 2006. DOI: 10.3397/1.2888385.
  • S. M. Hasheminejad, and S. Kazemirad, Dynamic viscoelastic effects on sound wave scattering by an eccentric compound circular cylinder, J. Sound Vib., vol. 318, no. 3, pp. 506–526, 2008. DOI: 10.1016/j.jsv.2008.04.022.
  • S. M. Hasheminejad, and S. Kazemirad, Scattering and absorption of sound by a compound cylindrical porous absorber with an eccentric core, Acta Acust. United with Acust., vol. 94, no. 1, pp. 79–90, 2008. DOI: 10.3813/AAA.918011.
  • G. Song, V. Sethi, and H.-N. Li, Vibration control of civil structures using piezoceramic smart materials: A review, Eng. Struct., vol. 28, no. 11, pp. 1513–1524, 2006. DOI: 10.1016/j.engstruct.2006.02.002.
  • S. Kumbhar, S. Maji, and B. Kumar, Automotive vibration and noise control using smart materials: a state of art and challenges, World J. Eng., vol. 11, no. 4, pp. 413–420, 2014. DOI: 10.1260/1708-5284.11.4.413.
  • S.-B. Choi, and Y.-M. Han, Piezoelectric Actuators: control Applications of Smart Materials, CRC Press, Taylor & Francis Group, 2019.
  • P. J. Titterton, Jr, Synthesis of optimal, single-frequency, passive control laws, with application to reducing the acoustic radiation from a submerged spherical shell, J. Acoust. Soc. Am., vol. 105, no. 4, pp. 2261–2268, 1999. DOI: 10.1121/1.426832.
  • C. E. Ruckman, and C. R. Fuller, Numerical simulation of active structural-acoustic control for a fluid-loaded, spherical shell, J. Acoust. Soc. Am., vol. 96, no. 5, pp. 2817–2825, 1994. DOI: 10.1121/1.411287.
  • C. Scandrett, Scattering and active acoustic control from a submerged spherical shell, J. Acoust. Soc. Am., vol. 111, no. 2, pp. 893–907, 2002. DOI: 10.1121/1.1428749.
  • S. M. Hasheminejad, S. M. Hosseinimaab, and M. Maleki, Acoustic scattering and active control from a near-surface underwater piezoelastic spherical shell transducer, IEEE J. Oceanic Eng., vol. 35, no. 2, pp. 438–447, 2010. DOI: 10.1109/JOE.2010.2041025.
  • S. M. Hasheminejad, and M. Gudarzi, Active sound radiation control of a submerged piezocomposite hollow sphere, J. Intell. Mater. Syst. Struct., vol. 26, no. 15, pp. 2073–2091, 2015. DOI: 10.1177/1045389X14549863.
  • K. Hiramoto, and K. M. Grigoriadis, Active/semi-active hybrid control for motion and vibration control of mechanical and structural systems, J. Vib. Control., vol. 22, no. 11, pp. 2704–2718, 2016. DOI: 10.1177/1077546314550700.
  • I. U. Khan, Vibration suppression in flexible structures using hybrid active and semi-active control, PhD diss, University of Sheffield., 2017.
  • S. Chen, Y. Fan, Q. Fu, H. Wu, Y. Jin, J. Zheng, and F. Zhang, A review of tunable acoustic metamaterials, Appl. Sci., vol. 8, pp. 1480, 2018.
  • Y. Zhang, K. Chen, X. Hao, and Y. Cheng, A review of underwater acoustic metamaterials, Chin. Sci. Bull., vol. 65, no. 15, pp. 1396–1410, 2020. DOI: 10.1360/TB-2019-0690.
  • W. Zhu, C. Ding, and X. Zhao, A numerical method for designing acoustic cloak with homogeneous metamaterials, Appl. Phys. Lett., vol. 97, pp. 131902, 2010.
  • S. I. Kundalwal, R. S. Kumar, and M. C. Ray, Smart damping of laminated fuzzy fiber reinforced composite shells using 1–3 piezoelectric composites, Smart Mater. Struct., vol. 22, no. 10, pp. 105001, 2013. DOI: 10.1088/0964-1726/22/10/105001.
  • S. I. Kundalwal, and S. A. Meguid, Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells, Acta Mech., vol. 226, no. 6, pp. 2035–2052, 2015. DOI: 10.1007/s00707-014-1297-8.
  • R. S. Kumar, S. I. Kundalwal, and M. C. Ray, Control of large amplitude vibrations of doubly curved sandwich shells composed of fuzzy fiber reinforced composite facings, Aerosp. Sci. Technol., vol. 70, pp. 10–28, 2017. DOI: 10.1016/j.ast.2017.07.027.
  • A. D. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications, Springer, American Institute of Physics, New York, 2019.
  • G. C. Gaunaurd, and W. Wertman, Transient acoustic scattering by fluid-loaded elastic shells, Int. J. Solids Struct., vol. 27, no. 6, pp. 699–711, 1991. DOI: 10.1016/0020-7683(91)90029-F.
  • M. Abramowitz, I. A. Stegun, and R. H. Romer, Handbook of mathematical functions with formulas, graphs, and mathematical tables, 1988.
  • M. Yalcintas, and J. P. Coulter, Electrorheological material based adaptive beams subjected to various boundary conditions, J. Intell. Mater. Syst. Struct., vol. 6, no. 5, pp. 700–717, 1995. DOI: 10.1177/1045389X9500600511.
  • E. Ghavanloo, H. Rafii-Tabar, and S. A. Fazelzadeh, New insights on nonlocal spherical shell model and its application to free vibration of spherical fullerene molecules, Int. J. Mech. Sci., vol. 161, pp. 105046, 2019.
  • F. J. Fahy, Foundations of Engineering Acoustics, Elsevier, Academic Press, London, 2000.
  • W.-S. Hwang, H. C. Park, and W. Hwang, Vibration control of a laminated plate with piezoelectric sensor/actuator: finite element formulation and modal analysis, J. Intell. Mater. Syst. Struct., vol. 4, pp. 317–329, 1993.
  • H. Sayyaadi, F. Rahnama, and M. A. A. Farsangi, Energy harvesting via shallow cylindrical and spherical piezoelectric panels using higher order shear deformation theory, Compos. Struct., vol. 147, pp. 155–167, 2016. DOI: 10.1016/j.compstruct.2016.03.035.
  • C.-S. Chiu, Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems, Automatica., vol. 48, no. 2, pp. 316–326, 2012. DOI: 10.1016/j.automatica.2011.08.055.
  • S. M. Hasheminejad, and M. Maleki, Interaction of a plane progressive sound wave with a functionally graded spherical shell, Ultrasonics., vol. 45, no. 1-4, pp. 165–177, 2006. DOI: 10.1016/j.ultras.2006.08.009.
  • W. Q. Chen, H. J. Ding, and R. Q. Xu, Three-dimensional free vibration analysis of a fluid-filled piezoceramic hollow sphere, Comput. Struct., vol. 79, no. 6, pp. 653–663, 2001. DOI: 10.1016/S0045-7949(00)00166-8.
  • K. J. Diercks, and R. Hickling, Echoes from hollow aluminum spheres in water, J. Acoust. Soc. Am., vol. 41, no. 2, pp. 380–393, 1967. DOI: 10.1121/1.1910349.
  • G. C. Gaunaurd, and A. Kalnins, Resonances in the sonar cross sections of coated spherical shells, Int. J. Solids Struct., vol. 18, no. 12, pp. 1083–1102, 1982. DOI: 10.1016/0020-7683(82)90095-6.
  • F. A. Amirkulova, Acoustic and Elastic Multiple Scattering and Radiation from Cylindrical Structures, Rutgers The State University of New Jersey, New Brunswick, 2014.
  • G. S. Sammelmann, D. H. Trivett, and R. H. Hackman, The acoustic scattering by a submerged, spherical shell. I: The bifurcation of the dispersion curve for the spherical antisymmetric Lamb wave, J. Acoust. Soc. Am., vol. 85, no. 1, pp. 114–124, 1989. [Database] DOI: 10.1121/1.397718.
  • G. C. Gaunaurd, and M. F. Werby, Lamb and creeping waves around submerged spherical shells resonantly excited by sound scattering, J. Acoust. Soc. Am., vol. 82, no. 6, pp. 2021–2033, 1987. DOI: 10.1121/1.395646.
  • S. G. Kargl, and P. L. Marston, Ray synthesis of the form function for backscattering from an elastic spherical shell: Leaky Lamb waves and longitudinal resonances, J. Acoust. Soc. Am., vol. 89, no. 6, pp. 2545–2558, 1991. [Database] DOI: 10.1121/1.400694.
  • M. F. Werby, The acoustical background for a submerged elastic shell, J. Acoust. Soc. Am., vol. 90, no. 6, pp. 3279–3287, 1991. DOI: 10.1121/1.401438.
  • H. Überall, Acoustics of shells, Acoust. Phys., vol. 47, no. 2, pp. 115–139, 2001. DOI: 10.1134/1.1355796.
  • D. H. Hughes, and P. L. Marston, Local temporal variance of Wigner’s distribution function as a spectroscopic observable: Lamb wave resonances of a spherical shell, J. Acoust. Soc. Am., vol. 94, no. 1, pp. 499–505, 1993. DOI: 10.1121/1.407062.
  • G. C. Gaunaurd, and M. F. Werby, Lamb and creeping waves around submerged spherical shells resonantly excited by sound scattering. II: Further applications, J. Acoust. Soc. Am., vol. 89, no. 4, pp. 1656–1667, 1991. DOI: 10.1121/1.400999.
  • S. Wise, and G. Leventhall, Active noise control as a solution to low frequency noise problems, J. Low Freq. Noise, Vib. Act. Control., vol. 29, no. 2, pp. 129–137, 2010. DOI: 10.1260/0263-0923.29.2.129.
  • Y. Cao, H. Sun, F. An, and X. Li, Active control of low-frequency sound radiation by cylindrical shell with piezoelectric stack force actuators, J. Sound Vib., vol. 331, no. 11, pp. 2471–2484, 2012. DOI: 10.1016/j.jsv.2012.02.001.
  • T. Murao, M. Nishimura, K. Sakurama, and S. Nishida, Basic study on active acoustic shielding (Improving noise-reducing performance in low-frequency range), Mech. Eng. J., vol. 1, no. 6, pp. EPS0065–EPS0065, 2014. DOI: 10.1299/mej.2014eps0065.
  • W. Wang, and P. J. Thomas, Low-frequency active noise control of an underwater large-scale structure with distributed giant magnetostrictive actuators, Sensors Actuators A Phys., vol. 263, pp. 113–121, 2017. DOI: 10.1016/j.sna.2017.05.044.
  • S. M. Hasheminejad, and A. Jamalpoor, Control of sound transmission into a hybrid double-wall sandwich cylindrical shell, J. Vib. Control., pp. 1–18, 2021. DOI: 1077546320982136.
  • S. S. Rao, Vibration of Continuous Systems, John Wiley & Sons Inc, New Jersey, 2019.
  • A. R. Setoodeh, M. Shojaee, and P. Malekzadeh, Application of transformed differential quadrature to free vibration analysis of FG-CNTRC quadrilateral spherical panel with piezoelectric layers, Comput. Methods Appl. Mech. Eng., vol. 335, pp. 510–537, 2018. DOI: 10.1016/j.cma.2018.02.022.
  • Y. Xiang, Y. Huang, J. Lu, L. Yuan, and S. Zou, New matrix method for analyzing vibration and damping effect of sandwich circular cylindrical shell with viscoelastic core, Appl. Math. Mech-Engl. Ed., vol. 29, no. 12, pp. 1587–1600, 2008. DOI: 10.1007/s10483-008-1207-x.
  • Y.-C. Hu, and S.-C. Huang, The frequency response and damping effect of three-layer thin shell with viscoelastic core, Comput. Struct., vol. 76, no. 5, pp. 577–591, 2000. DOI: 10.1016/S0045-7949(99)00182-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.