319
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Anisotropic and elastoplastic characteristics of 3D printed graphene/aluminum composites by coupled experimental and numerical analysis

, , , &
Pages 7387-7398 | Received 07 Sep 2021, Accepted 23 Oct 2021, Published online: 16 Nov 2021

References

  • L. Cao, C. Hou, F. Tang, S. Liang, and Z. Nie, Thermal stability and high-temperature mechanical performance of nanostructured W-Cu-Cr-ZrC composite, Compos. B, vol. 208, pp. 108600, 2021. DOI: 10.1016/j.compositesb.2020.108600.
  • D. Yang, Z. Yang, C. Wang, X. Chen, and M. Li, Micromechanical modeling of cyclic elasto-viscoplastic behavior of unidirectional metal matrix composites under elevated temperature, Mech. Adv. Mater. Struct., vol. 2, pp. 1–16, 2021. DOI: 10.1080/15376494.2021.1893417.
  • Y. Chen, L. Chen, Q. Huang, and Z. Zhang, Effect of metal type on the energy absorption of fiber metal laminates under low-velocity impact, Mech. Adv. Mater. Struct., pp. 1–17, 2021. DOI: 10.1080/15376494.2021.1933659.
  • F. Shuang and K.E. Aifantis, Dislocation-graphene interactions in Cu/graphene composites and the effect of boundary conditions: A molecular dynamics study, Carbon, vol. 172, pp. 50–70, 2021. DOI: 10.1016/j.carbon.2020.09.043.
  • Z. Zhang, Y. Li, H. Zhang, and G. Chai, Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory, Mech. Adv. Mater. Struct., vol. 27, no. 1, pp. 1–9, 2018.
  • J.H. Zhao, X. Xue, B.B. Wang, T. Liu, L. Luo, Y.N. Wang, L. Wang, Y.Q. Su, J.J. Guo, and H.Z. Fu, Selective laser melting Al-3.4Mg-0.5Mn-0.8Sc-0.4Zr alloys: From melting pool to the microstructure and mechanical properties, Mater. Sci. Eng. A, vol. 825, pp. 141889, 2021.
  • R.D. Li, M.B. Wang, Z.M. Li, P. Cao, T.C. Yuan, and H.B. Zhu, Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms, Acta Mater., vol. 193, pp. 83–98, 2020. DOI: 10.1016/j.actamat.2020.03.060.
  • G.D. Pasquale and S. Sibona, Hybrid materials based on polymers-filled AM steel lattices with energy absorption capabilities, Mech. Adv. Mater. Struct., pp. 1–13, 2021. DOI: 10.1080/15376494.2020.1871536.
  • Z. Hu, C. Feng, J. Xu, and Z. Min, 3D printing graphene-aluminum nanocomposites, J. Alloys Compd., vol. 746, no. 25, pp. 269–276, 2018. DOI: 10.1016/j.jallcom.2018.02.272.
  • K. Lin, Y. Fang, D. Gu, Q. Ge, and L. Xi. Selective laser melting of graphene reinforced titanium matrix composites: Powder preparation and its formability, Adv. Powder Technol., vol. 32, no. 5, pp. 1426–1437, 2021. DOI: 10.1016/j.apt.2021.03.003.
  • D.D. Gu, H.M. Zhang, H.Y. Chen, et al., Laser additive manufacturing of high-performance metallic aerospace components, Chin. J. Lasers, vol. 47, no. 5, pp. 0500002, 2020.
  • Q. Yan, B. Chen, and J.S. Li, Super-high-strength graphene/titanium composites fabricated by selective laser melting, Carbon, vol. 174, no. 12, pp. 451–462, 2020.
  • X. Zhang, D. Li, Y. Liao, and Y. Zeng, Three-dimensional characterization of selective laser melted graphene oxide-reinforced Ti-48Al-2Cr-2Nb alloy, JOM., vol. 73, no. 6, pp. 1795–1803, 2021. DOI: 10.1007/s11837-021-04666-2.
  • Z. Zhao, X. Xu, Q. Wang, P. Bai, and W. Wang, Microstructure and properties of periodic porous Inconel 718 alloy prepared by selective laser melting, Adv. Compos. Coupled Mater., vol. 4, no. 2, pp. 332–338, 2021.
  • A. Mandal, J.K. Tiwari, B. Almangour, A. Das, N. Sathish, R.K. Sharma, P. Rajput, and A.K. Srivastava, Microstructural and thermal expansion behaviour of graphene reinforced 316L stainless steel matrix composite prepared via powder bed fusion additive manufacturing, Results Mater., vol. 11, pp. 100200, 2021. DOI: 10.1016/j.rinma.2021.100200.
  • L.B. Li, R.D. Li, T.C. Yuan, and X. Li, Microstructures and tensile properties of a selective laser melted Al-Zn-Mg-Cu (Al7075) alloy by Si and Zr microalloying, Mater. Sci. Eng. A, vol. 787, pp. 139492, 2020. DOI: 10.1016/j.msea.2020.139492.
  • Y. Li, Z. Feng, L. Huang, K. Essa, and L. Hao, Additive manufacturing high performance graphene-based composites: A review, Compos. A, vol. 124, pp. 105483, 2019.
  • L. Wu, Z. Zhao, P. Bai, W. Zhao, Y. Li, M. Liang, H. Liao, P. Huo, and J. Li, Wear resistance of graphene nano-platelets (GNPs) reinforced AlSi10Mg matrix composite prepared by SLM, Appl. Surf. Sci., vol. 503, pp. 144156.1-144156–11, 2020. DOI: 10.1016/j.apsusc.2019.144156.
  • Y.H. Zhao, L. Gao, L. Tan, J.H. Wang, B. Han, and Z.Y. Zhao, Optimization of ball milling process of graphene/Al matrix composite powder and selective laser melting (SLM), Lasers Eng., vol. 48, no. 1–3, pp. 183–194, 2021.
  • M. Khan, R.U. Din, A. Wadood, W.H. Syed, S. Akhtar, and R.E. Aune, Effect of graphene nanoplatelets on the physical and mechanical properties of Al6061 in fabricated and T6 thermal conditions, J. Alloys Compd., vol. 790, pp. 1076–1091, 2019. DOI: 10.1016/j.jallcom.2019.03.222.
  • J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, and S.L. Dai, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling, Mater. Sci. Eng. A, vol. 626, no. 25, pp. 400–405, 2015. DOI: 10.1016/j.msea.2014.12.102.
  • Y. Zhang and X. Li, Bioinspired, graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness, Nano Lett., vol. 17, no. 11, pp. 6907–6915, 2017. DOI: 10.1021/acs.nanolett.7b03308.
  • D. Li, Y. Yin, X. Liao, Q.H. Qin, A novel method for preparing and characterizing graphene nanoplatelets/aluminum nanocomposites, Nano Res., vol. 11, pp. 1642–1650, 2018. DOI: 10.1007/s12274-017-1779-9.
  • B. Wang, J. Liu, S. Yue, X. Wang, and T. Wang, Preparation of graphene/Al composites with a lamellar structure by silane cross-linking graphene oxide, J. Mater. Res. Technol., vol. 13, pp. 2433–2441, 2021. DOI: 10.1016/j.jmrt.2021.06.009.
  • J. Zegzulka, D. Gelnar, L. Jezerska, R. Prokes, and J. Rozbroj, Characterization and flowability methods for metal powders, Sci. Rep., vol. 10, no. 1, pp. 1–19, 2020. DOI: 10.1038/s41598-020-77974-3.
  • B.J. Miao, Q.S. Yang, L.Y. Liu, and S.W. Li, The three-cavity microstructures and mechanical properties of honeybee stingers, Mater. Res. Express, vol. 7, no. 10, pp. 105403, 2020. DOI: 10.1088/2053-1591/abb96a.
  • M. Liu, C. Lu, K.A. Tieu, C.T. Peng, and C. Kong, A combined experimental-numerical approach for determining mechanical properties of aluminum subjects to nanoindentation, Sci. Rep., vol. 5, pp. 15072, 2015. DOI: 10.1038/srep15072.
  • N. Liu, X.J. Yang, Y.U. Zheng, and L. Zhao, Indentation size effect of germanium single crystal with different crystal orientations, Trans. Nonferrous Met. Soc. China, vol. 30, no. 1, pp. 181–190, 2020. DOI: 10.1016/S1003-6326(19)65190-3.
  • P. Hauild, J. Iek, J. Ech, J. Zka, and H.S. Kim, Indentation size effect in high pressure torsion processed high entropy alloy, Acta Polytech. CTU Proc., vol. 27, pp. 141–144, 2020.
  • V.S. Kathavate, B.P. Kumar, I. Singh, and K. Eswar Prasad, Analysis of indentation size effect (ISE) in nanoindentation hardness in polycrystalline PMN-PT piezoceramics with different domain configurations, Ceram. Int., vol. 47, no. 9, pp. 11870–11877, 2021. DOI: 10.1016/j.ceramint.2021.01.027.
  • W. Jiang, J. Su, and X. Feng, Effect of surface roughness on nanoindentation test of thin films, Eng. Fract. Mech., vol. 75, no. 17, pp. 4965–4972, 2008. DOI: 10.1016/j.engfracmech.2008.06.016.
  • X. Miao, X. Liu, P. Lu, J. Han, and M. Wu, Influence of scanning strategy on the performances of go-reinforced Ti6Al4V nanocomposites manufactured by SLM, Metals, vol. 10, no. 10, pp. 1379, 2020. DOI: 10.3390/met10101379.
  • A. Am, A. Jkt, B. Nsa, et al., Microstructural and mechanical properties evaluation of graphene reinforced stainless steel composite produced via selective laser melting, Mater. Sci. Eng. A, vol. 774, pp. 138936, 2020.
  • Y. Song, Y. Ma, and K. Zhan, Simulations of deformation and fracture of graphene reinforced aluminium matrix nanolaminated composites, Mech. Mater., vol. 142, pp. 103283, 2020. DOI: 10.1016/j.mechmat.2019.103283.
  • Y. Su, Z. Li, Y. Yu, L. Zhao, Z. Li, Q. Guo, D. Xiong, and D. Zhang, Composite structural modeling and tensile mechanical behavior of graphene reinforced metal matrix composites, Sci. China Mater., vol. 61, no. 1, pp. 112–124, 2018. DOI: 10.1007/s40843-017-9142-2.
  • L.Y. Liu, Q.S. Yang, X. Liu, and J.J. Shang, Modeling damage evolution of graphene/aluminum composites considering crystal cracking and interface failure, Compos. Struct., vol. 267, no. 5696, pp. 113863, 2021. DOI: 10.1016/j.compstruct.2021.113863.
  • X. Wang, Y. Su, S. Han, M.A. Crimp, Y. Wang, and Y. Wang, Elastic recovery induced strengthening effect in copper/multilayer-graphene interface regions revealed by instrumental nanoindentation , Compos. B Eng., vol. 5925, pp. 108832, 2021. DOI: 10.1016/j.compositesb.2021.108832.
  • M. Rashad, F. Pan, and M. Asif, Exploring mechanical behavior of Mg-6Zn alloy reinforced with graphene nanoplatelets, Mater. Sci. Eng. A, vol. 649, no. 4, pp. 263–269, 2016. DOI: 10.1016/j.msea.2015.10.009.
  • J.G. Swadener, E.P. George, and G.M. Pharr, The correlation of the indentation size effect measured with indenters of various shapes, J. Mech. Phys. Solids, vol. 50, pp. 681–694, 2002. DOI: 10.1016/S0022-5096(01)00103-X.
  • Z. Ma, S. Long, Y. Pan, and Y. Zhou, Indentation depth dependence of the mechanical strength of Ni films, J. Appl. Phys., vol. 103, pp. 043512–043516, 2008. DOI: 10.1063/1.2885090.
  • L.Y. Liu, Q.S. Yang, X. Liu, and X.C. Nian, Crystal cracking of grain-gradient aluminum by a combined CPFEM-CZM method, Eng. Fract. Mech., vol. 242, pp. 107507, 2021. DOI: 10.1016/j.engfracmech.2020.107507.
  • L.Y. Liu, Q.S. Yang, and Y.X. Zhang, Plastic damage of additive manufactured aluminium with void defects, Mech. Res. Commun., vol. 95, pp. 45–51, 2019. DOI: 10.1016/j.mechrescom.2018.12.002.
  • F. Roters, Y. Wang, J.-C. Kuo, and D. Raabe, Comparison of single crystal simple shear deformation experiments with crystal plasticity finite element simulations, Adv. Eng. Mater., vol. 6, no. 8, pp. 653–656, 2004. DOI: 10.1002/adem.200400079.
  • K.K. Mathur and P.R. Dawson, On modeling the development of crystallographic texture in bulk forming processes, Int. J. Plast., vol. 5, no. 1, pp. 67–94, 1989. DOI: 10.1016/0749-6419(89)90020-X.
  • Q. Liu, N. Hansen, C. Maurice, and J. Driver, Heterogeneous microstructures and microtextures in cube-oriented al crystals after channel die compression, Metall. Mater. Trans. A, vol. 29, pp. 2333–2344, 1998. DOI: 10.1007/s11661-998-0110-5.
  • Z.Y. Liu, L.H. Wang, Y.N. Zan, W.G. Wang, and Z.Y. Ma, Enhancing strengthening efficiency of graphene nano-sheets in aluminum matrix composite by improving interface bonding, Compos. B, vol. 199, pp. 108268, 2020. DOI: 10.1016/j.compositesb.2020.108268.
  • N.S. Pourmand and H. Asgharzadeh, Aluminum matrix composites reinforced with graphene: A review on production, microstructure, and properties, Crit. Rev. Solid State Mater. Sci., vol. 45, no. 4, pp. 1–49, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.