137
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A high accuracy four variable displacement model for thick-faced sandwich beams

, &
Pages 7415-7430 | Received 14 Jun 2021, Accepted 26 Oct 2021, Published online: 16 Nov 2021

References

  • R. Khandan, S. Noroozi, P. Sewell, et al, The development of laminated composite plate theories: a review, J. Mater. Sci., vol. 47, no. 16, pp. 5901–5910, 2012. DOI: 10.1007/s10853-012-6329-y.
  • K. M. Liew, Z. Z. Pan, and L. W. Zhang, An overview of layerwise theories for composite laminates and structures: Development, numerical implementation and application, Compos. Struct., vol. 216, pp. 240–259, 2019. DOI: 10.1016/j.compstruct.2019.02.074.
  • N. J. Pagano, Exact solutions for composite laminates in cylindrical bending, J. Compos. Mater., vol. 3, no. 3, pp. 398–411, 1969. DOI: 10.1177/002199836900300304.
  • N. J. Pagano, Exact solutions for rectangular bidirectional composites and sandwich plates, J. Compos. Mater., vol. 4, no. 1, pp. 20–34, 1970. DOI: 10.1177/002199837000400102.
  • M. Lezgy-Nazargah, S. B. Beheshti-Aval, and M. Shariyat, A refined mixed global-local finite element model for bending analysis of multi-layered rectangular composite beams with small widths, Thin-Walled Struct., vol. 49, no. 2, pp. 351–362, 2011. DOI: 10.1016/j.tws.2010.09.027.
  • A. S. Sayyad, Y. M. Ghugal, and N. S. Naik, Bending analysis of laminated composite and sandwich beams according to refined trigonometric beam theory, Curved and Layered Struct., vol. 2, no. 1, pp. 279–289, 2015. DOI: 10.1515/cls-2015-0015.
  • M. Zarei, G. H. Rahimi, and M. Hemmatnezhad, Global buckling analysis of laminated sandwich conical shells with reinforced lattice cores based on the first-order shear deformation theory, Int. J. Mech. Sci., vol. 187, pp. 105872, 2020. DOI: 10.1016/j.ijmecsci.2020.105872.
  • M. Shishehsaz, H. Raissi, and S. Moradi, Stress distribution in a five-layer circular sandwich composite plate based on the third and hyperbolic shear deformation theories, Mech. Adv. Mater. Struct., vol. 27, no. 11, pp. 927–940, 2020. DOI: 10.1080/15376494.2018.1502379.
  • E. Carrera, M. Filippi, and E. Zappino, Laminated beam analysis by polynomial, trigonometric, exponential and zig-zag theories, Eur. J. Mech.-A/Solids., vol. 41, pp. 58–69, 2013. DOI: 10.1016/j.euromechsol.2013.02.006.
  • S. Abrate, and MDi Sciuva, Equivalent single layer theories for composite and sandwich structures, Compos. Struct., vol. 179, pp. 482–494, 2017. DOI: 10.1016/j.compstruct.2017.07.090.
  • A. S. Sayyad, and Y. M. Ghugal, Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature, Compos. Struct., vol. 171, pp. 486–504, 2017. DOI: 10.1016/j.compstruct.2017.03.053.
  • A. S. Atteshamuddin, and Y. M. Ghugal, Modeling and analysis of functionally graded sandwich beams: a review, Mech. Adv. Mater. Struct., vol. 26, no. 21, pp. 1776–1795, 2019. DOI: 10.1080/15376494.2018.1447178.
  • S. G. Lekhnitskii, Strength calculation of composite beams, Vestnik Inzhen i Tekhnikov., vol. 9, pp. 137–148, 1935.
  • E. Carrera, Historical review of zigzag theories for multilayered plates and shells, Appl. Mech. Rev., vol. 56, no. 3, pp. 287–308, 2003. DOI: 10.1115/1.1557614.
  • S. A. Ambartsumian, On a general theory of anisotropic shells, PMM., vol. 22, no. 2, pp. 226–237, 1958.
  • Y. Y. Yu, A new theory of elastic sandwich plates one dimensional case, Trans. Asme, J. Appl. Mech., vol. 37, pp. 1031–1036, 1959.
  • J. M. Whitney, The effect of transverse shear deformation on the bending of laminated plates, J. Compos. Mater., vol. 3, no. 3, pp. 534–547, 1969. DOI: 10.1177/002199836900300316.
  • B. K. Rath, and Y. C. Das, Vibration of layered shells, J. Sound Vib., vol. 28, no. 4, pp. 737–757, 1973. DOI: 10.1016/S0022-460X(73)80146-4.
  • H. Murakami, Laminated composite plate theory with improved in-plane responses, J Appl Mech., vol. 53, no. 3, pp. 661–666, 1986. DOI: 10.1115/1.3171828.
  • S. Ren, C. Cheng, Z. Meng, B. Yu, and G. Zhao, A new general third-order zigzag model for asymmetric and symmetric laminated composite beams, Compos. Struct., vol. 260, pp. 113523, 2021. DOI: 10.1016/j.compstruct.2020.113523.
  • X. Li, and D. Liu, A laminate theory based on global–local superposition, Commun. Numer. Meth. Engng., vol. 11, no. 8, pp. 633–641, 1995. DOI: 10.1002/cnm.1640110802.
  • Z. Wu, R. Chen, and W. Chen, Refined laminated composite plate element based on global–local higher-order shear deformation theory, Compos. Struct., vol. 70, no. 2, pp. 135–152, 2005. DOI: 10.1016/j.compstruct.2004.08.019.
  • D. H. Li, Layerwise theories of laminated composite structures and their applications: A review, Arch. Computat. Methods Eng., vol. 28, no. 2, pp. 577–600, 2021. DOI: 10.1007/s11831-019-09392-2.
  • D. Krajcinovic, Sandwich beam analysis, J. Appl. Mech., vol. 39, no. 3, pp. 773–778, 1972. DOI: 10.1115/1.3422787.
  • G. W. Swift, and R. A. Heller, Layered beam analysis, J. Engrg. Mech. Div., vol. 100, no. 2, pp. 267–282, 1974. DOI: 10.1061/JMCEA3.0001874.
  • L L. Durocher, and R. Solecki, Bending and vibration of transversely isotropic two-layer plates, AIAA J., vol. 13, no. 11, pp. 1522–1524, 1975. DOI: 10.2514/3.7024.
  • J. N. Reddy, A generalization of two-dimensional theories of laminated composite plates, Commun. Appl. Numer. Methods., vol. 3, no. 3, pp. 173–180, 1987. DOI: 10.1002/cnm.1630030303.
  • H. Arya, R. P. Shimpi, and N. K. Naik, Layer-by-layer analysis of a simply supported thick flexible sandwich beam, AIAA J., vol. 40, no. 10, pp. 2133–2136, 2002. DOI: 10.2514/2.1550.
  • T. S. Plagianakos, and D. A. Saravanos, High-order layerwise mechanics and finite element for the damped dynamic characteristics of sandwich composite beams, Int. J. Solids Struct., vol. 41, no. 24–25, pp. 6853–6871, 2004. DOI: 10.1016/j.ijsolstr.2004.05.038.
  • M. A. R. Loja, J. I. Barbosa, and C. M. M. Soares, Dynamic behaviour of soft core sandwich beam structures using kriging-based layerwise models, Compos. Struct., vol. 134, pp. 883–894, 2015. DOI: 10.1016/j.compstruct.2015.08.096.
  • A. Pagani, Y. Yan, and E. Carrera, Exact solutions for static analysis of laminated, box and sandwich beams by refined layer-wise theory, Compos. Part B: Engin., vol. 131, pp. 62–75, 2017. DOI: 10.1016/j.compositesb.2017.08.001.
  • S. Momeni, A. Zabihollah, and M. Behzad, Development of an accurate finite element model for N-layer MR-laminated beams using a layerwise theory, Mech. Adv. Mater. Struct., vol. 25, no. 13, pp. 1148–1155, 2018. DOI: 10.1080/15376494.2017.1341579.
  • A. Toledano, and H. Murakami, A composite plate theory for arbitrary laminate configurations, J Appl Mech., vol. 54, no. 1, pp. 181–189, 1987. DOI: 10.1115/1.3172955.
  • E. Carrera, Mixed layer-wise models for multilayered plates analysis, Compos. Struct., vol. 43, no. 1, pp. 57–70, 1998. DOI: 10.1016/S0263-8223(98)00097-X.
  • E. Carrera, Multilayered shell theories accounting for layerwise mixed description, Part 1: Governing equations, AIAA J., vol. 37, no. 9, pp. 1107–1116, 1999. DOI: 10.2514/2.821.
  • E. Carrera, Evaluation of layerwise mixed theories for laminated plates analysis, AIAA J., vol. 36, no. 5, pp. 830–839, 1998. DOI: 10.2514/2.444.
  • E. Carrera, An assessment of mixed and classical theories for the thermal stress analysis of orthotropic multilayered plates, J Thermal Stress., vol. 23, no. 9, pp. 797–831, 2000. DOI: 10.1080/014957300750040096.
  • E. Carrera, Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking, Arco., vol. 10, no. 3, pp. 215–296, 2003. DOI: 10.1007/BF02736224.
  • E. Carrera, G. A. Fiordilino, M. Nagaraj, A. Pagani, and M. Montemurro, A global/local approach based on CUF for the accurate and efficient analysis of metallic and composite structures, Eng. Struct., vol. 188, pp. 188–201, 2019. DOI: 10.1016/j.engstruct.2019.03.016.
  • W. Chen, and P. Jia, Interlaminar stresses analysis and the limit state function approximating methods for composite structure reliability assessment: A selected review and some perspectives, J. Compos. Mater., vol. 47, no. 12, pp. 1535–1547, 2013. DOI: 10.1177/0021998312449676.
  • M. Petrolo, M. Cinefra, A. Lamberti, and E. Carrera, Evaluation of mixed theories for laminated plates through the axiomatic/asymptotic method, Compos Part B: Engin., vol. 76, pp. 260–272, 2015. DOI: 10.1016/j.compositesb.2015.02.027.
  • F. Moleiro, E. Carrera, E. Zappino, G. Li, and M. Cinefra, Layerwise mixed elements with node-dependent kinematics for global-local stress analysis of multilayered plates using high-order Legendre expansions, Comput. Methods Appl. Mech. Engin., vol. 359, pp. 112764, 2020. DOI: 10.1016/j.cma.2019.112764.
  • S. Ren, and G. Zhao, A new formulation of continuous transverse shear stress field for static dynamic analysis of sandwich beams, Int. J. Numer. Methods Eng., vol. 121, no. 8, pp. 1847–1876, 2020. DOI: 10.1002/nme.6289.
  • O. Polit, M. Touratier, and P. Lory, A new eight-node quadrilateral shear-bending plate finite element, Int. J. Numer. Meth. Engng., vol. 37, no. 3, pp. 387–411, 1994. DOI: 10.1002/nme.1620370303.
  • A. Y. T. Leung, Subspace iteration for complex symmetric eigenproblems, J. Sound Vib., vol. 184, no. 4, pp. 627–637, 1995. DOI: 10.1006/jsvi.1995.0337.
  • P. Vidal, and O. Polit, A sine finite element using a zig-zag function for the analysis of laminated composite beams, Compos. Part B: Engin., vol. 42, no. 6, pp. 1671–1682, 2011. DOI: 10.1016/j.compositesb.2011.03.012.
  • A. Chakrabarti, H. D. Chalak, M. Ashraf Iqbal, and A. H. Sheikh, A new FE model based on higher order zigzag theory for the analysis of laminated sandwich beam with soft core, Compos. Struct., vol. 93, no. 2, pp. 271–279, 2011. DOI: 10.1016/j.compstruct.2010.08.031.
  • Z. Wu, and W. Chen, A global higher-order zig-zag model in terms of the HW variational theorem for multilayered composite beams, Compos. Struct., vol. 158, pp. 128–136, 2016.
  • A. G. de Miguel, E. Carrera, A. Pagani, and E. Zappino, Accurate evaluation of interlaminar stresses in composite laminates via mixed one-dimensional formulation, AIAA J., vol. 56, no. 11, pp. 4582–4513, 2018. DOI: 10.2514/1.J057189.
  • H. Hu, S. Belouettar, M. Potier-Ferry, and ElM. Daya, Review and assessment of various theories for modelling sandwich composites, Compos. Struct., vol. 84, no. 3, pp. 282–292, 2008. DOI: 10.1016/j.compstruct.2007.08.007.
  • E. Carrera, M. Filippi, and E. Zappino, Free vibration analysis of laminated beam by polynomial, trigonometric, exponential and zig-zag theories, J. Compos. Mater., vol. 48, no. 19, pp. 2299–2316, 2014. DOI: 10.1177/0021998313497775.
  • J. R. Banerjee, C. W. Cheung, R. Morishima, M. Perera, and J. Njuguna, Free vibration of a three-layered sandwich beam using the dynamic stiffness method and experiment, Int. J. Solids Struct., vol. 44, no. 22–23, pp. 7543–7563, 2007. DOI: 10.1016/j.ijsolstr.2007.04.024.
  • W. P. Howson, and A. Zare, Exact dynamic stiffness matrix for flexural vibration of three-layered sandwich beams, J. Sound Vib., vol. 282, no. 3–5, pp. 753–767, 2005. DOI: 10.1016/j.jsv.2004.03.045.
  • M. Filippi, A. Pagani, M. Petrolo, G. Colonna, and E. Carrera, Static and free vibration analysis of laminated beams by refined theory based on Chebyshev polynomials, Compos. Struct., vol. 132, pp. 1248–1259, 2015. DOI: 10.1016/j.compstruct.2015.07.014.
  • M. L. Soni, Finite element analysis of viscoelastically damped sandwich structures, Shock Vibration Bull., vol. 55, no. 1, pp. 97–109, 1981.
  • F. Abdoun, L. Azrar, E. M. Daya, and M. Potier-Ferry, Forced harmonic response of viscoelastic structures by an asymptotic numerical method, Comput. Struct., vol. 87, no. 1–2, pp. 91–100, 2009. DOI: 10.1016/j.compstruc.2008.08.006.
  • E. M. Daya, and M. Potier-Ferry, A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures, Comput. Struct., vol. 79, no. 5, pp. 533–541, 2001. DOI: 10.1016/S0045-7949(00)00151-6.
  • S. Ren, G. Zhao, and S. Zhang, Elastic-viscoelastic composite structures analysis with an improved burgers model, J. Vibration and Acoustics., vol. 140, no. 3, pp. 031006, 2018. DOI: 10.1115/1.4038906.
  • Q. Chen, and Y. W. Chan, Integral finite element method for dynamic analysis of elastic-viscoelastic composite structures, Comput. Struct., vol. 74, no. 1, pp. 51–64, 2000. DOI: 10.1016/S0045-7949(98)00321-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.