284
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Crushing behavior of multi-cell tubes with a novel pattern of design for their cross-section under multiple crushing angles

&
Pages 7441-7458 | Received 09 Aug 2021, Accepted 25 Oct 2021, Published online: 13 Dec 2021

References

  • M. M. Sofi, A review on energy absorption of multi cell thin walled structure, J Adv Rev Sci Res., vol. 16, pp. 18–24, 2015.
  • P. Hosseini-Tehrani, and A. Nankali, Study on characteristics of a crashworthy high-speed train nose, Int. J. Crashworthiness, vol. 15, pp. 161–173, 2010. DOI: 10.1080/13588260903094418.
  • A. A. Nia, and J. H. Hamedani, Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries, Thin-Walled Struct., vol. 48, pp. 946–954, 2010.
  • S. Guillow, G. Lu, and R. Grzebieta, Quasi-static axial compression of thin-walled circular aluminium tubes, Int. J. Mech. Sci., vol. 43, pp. 2103–2123, 2001. DOI: 10.1016/S0020-7403(01)00031-5.
  • W. Abramowicz, and N. Jones, Dynamic progressive buckling of circular and square tubes, Int. J. Impact Eng., vol. 4, pp. 243–270, 1986. DOI: 10.1016/0734-743X(86)90017-5.
  • P. Hosseini-Tehrani, and S. Pirmohammad, Collapse study of thin-walled polygonal section columns subjected to oblique loads, Proc. Inst. Mech. Eng., vol. 221, pp. 801–810, 2007. DOI: 10.1243/09544070JAUTO482.
  • P. Hosseini-Tehrani, and S. Pirmohammad, Collapse study of a pair thin-walled prismatic column subjected to oblique loads, Proc. Inst. Mech. Eng., vol. 2011, 267–279, 2011.
  • G. Sun, T. Pang, J. Fang, G. Li, and Q. Li, Parameterization of criss-cross configurations for multiobjective crashworthiness optimization, Int. J. Mech. Sci., vol. 124, pp. 145–157, 2017. DOI: 10.1016/j.ijmecsci.2017.02.027.
  • A. Eyvazian, M. K. Habibi, A. M. Hamouda, and R. Hedayati, Axial crushing behavior and energy absorption efficiency of corrugated tubes, Mater. Des. (1980-2015), vol. 54, pp. 1028–1038, 2014. DOI: 10.1016/j.matdes.2013.09.031.
  • A. Eyvazian, T. Tran, and A. M. Hamouda, Experimental and theoretical studies on axially crushed corrugated metal tubes, Int. J. Non. Linear Mech., vol. 101, pp. 86–94, 2018. DOI: 10.1016/j.ijnonlinmec.2018.02.009.
  • A. Baykasoğlu, and C. Baykasoğlu, Multiple objective crashworthiness optimization of circular tubes with functionally graded thickness via artificial neural networks and genetic algorithms, Proc. Inst. Mech. Eng. vol. 231, pp. 2005–2016, 2017. DOI: 10.1177/0954406215627181.
  • E. Çetin, and C. Baykasoğlu, Energy absorption of thin-walled tubes enhanced by lattice structures, Int. J. Mech. Sci., vol. 157, pp. 471–484, 2019. DOI: 10.1016/j.ijmecsci.2019.04.049.
  • C. Baykasoğlu, A. Baykasoğlu, and M. Tunay Çetin, A comparative study on crashworthiness of thin-walled tubes with functionally graded thickness under oblique impact loadings, Int. J. Crashworthiness, vol. 24, pp. 453–471, 2019. DOI: 10.1080/13588265.2018.1478775.
  • H. Kavi, A. K. Toksoy, and M. Guden, Predicting energy absorption in a foam-filled thin-walled aluminum tube based on experimentally determined strengthening coefficient, Mater. Des., vol. 27, pp. 263–269, 2006. DOI: 10.1016/j.matdes.2004.10.024.
  • M. Seitzberger, F. G. Rammerstorfer, R. Gradinger, H. P. Degischer, M. Blaimschein, and C. Walch, Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam, Int. J. Solids Struct., vol. 37, pp. 4125–4147, 2000. DOI: 10.1016/S0020-7683(99)00136-5.
  • S. Pirmohammad, and S. Ahmadi-Saravani, Crashworthiness performance of stiffened foam-filled tapered structures under axial and oblique dynamic loads, Latin Am. J. Solids Struct., vol. 15, pp. 1–21, 2018. DOI: 10.1590/1679-78254596.
  • S. Pirmohammad, S. Ahmadi-Saravani, and J. Zakavi, Crashworthiness optimization design of foam-filled tapered decagonal structures subjected to axial and oblique impacts, J Central South Univ., vol. 26, pp. 2729–2745, 2019. DOI: 10.1007/s11771-019-4209-1.
  • W. Chen, and T. Wierzbicki, Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption, Thin-Walled Struct., vol. 39, pp. 287–306, 2001. DOI: 10.1016/S0263-8231(01)00006-4.
  • H. Yin, G. Wen, S. Hou, and K. Chen, Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes, Mater. Des., vol. 32, pp. 4449–4460, 2011. DOI: 10.1016/j.matdes.2011.03.060.
  • A. Baroutaji, A. Arjunan, A. Niknejad, T. N. Tran, and A. G. Olabi, Application of cellular material in crashworthiness applications: an overview, Reference Module in Materials Science and Materials Engineering, 2019. DOI: 10.1016/B978-0-12-803581-8.09268-7.
  • S. Yang, and C. Qi, Multiobjective optimization for empty and foam-filled square columns under oblique impact loading, Int. J. Impact Eng., vol. 54, pp. 177–191, 2013. DOI: 10.1016/j.ijimpeng.2012.11.009.
  • A. Baroutaji, A. Arjunan, J. Robinson, M. Ramadan, M. A. Abdelkareem, and A. G. Olabi, Metamaterial for crashworthiness applications, 2021. DOI: 10.1016/B978-0-12-815732-9.00092-9.
  • X. Zhang, H. Zhang, and Z. Wen, Axial crushing of tapered circular tubes with graded thickness, Int. J. Mech. Sci., vol. 92, pp. 12–23, 2015. DOI: 10.1016/j.ijmecsci.2014.11.022.
  • P. Hosseini-Tehrani, S. Pirmohammad, and M. Golmohammadi, Study on the collapse of tapered tubes subjected to oblique loads, Proc. Inst. Mech. Eng., vol. 222, pp. 2025–2039, 2008. DOI: 10.1243/09544070JAUTO912.
  • C. Qi, and S. Yang, Crashworthiness and lightweight optimisation of thin-walled conical tubes subjected to an oblique impact, Int. J. Crashworthiness, vol. 19, pp. 334–351, 2014. DOI: 10.1080/13588265.2014.893788.
  • A. Baroutaji, A. Arjunan, M. Stanford, J. Robinson, and A. G. Olabi, Deformation and energy absorption of additively manufactured functionally graded thickness thin-walled circular tubes under lateral crushing, Eng. Struct., vol. 226, pp. 111324, 2021. DOI: 10.1016/j.engstruct.2020.111324.
  • H. Nikkhah, A. Baroutaji, and A. G. Olabi, Crashworthiness design and optimisation of windowed tubes under axial impact loading, Thin-Walled Struct., vol. 142, pp. 132–148, 2019. DOI: 10.1016/j.tws.2019.04.052.
  • J. Song, and F. Guo, A comparative study on the windowed and multi-cell square tubes under axial and oblique loading, Thin-Walled Struct., vol. 66, pp. 9–14, 2013. DOI: 10.1016/j.tws.2013.02.002.
  • S. Pirmohammad, and S. Esmaeili-Marzdashti, Multi-objective crashworthiness optimization of square and octagonal bitubal structures including different hole shapes, Thin-Walled Struct., vol. 139, pp. 126–138, 2019. DOI: 10.1016/j.tws.2019.03.004.
  • P. Xu, C. Yang, Y. Peng, S. Yao, J. Xing, and B. Li, Cut-out grooves optimization to improve crashworthiness of a gradual energy-absorbing structure for subway vehicles, Mater. Des., vol. 103, pp. 132–143, 2016. DOI: 10.1016/j.matdes.2016.04.059.
  • S. Pirmohammad, M. H. Ekbatan, and S. Esmaeili-Marzdashti, Crashworthiness of double-cell conical tubes with different cross sections subjected to dynamic axial and oblique loads, J. Central South Univ., vol. 25, pp. 632–645, 2018.
  • S. Pirmohammad, S. Esmaeili-Marzdashti, and A. Eyvazian, Crashworthiness design of multi-cell tapered tubes using response surface methodology, J. Comput. Appl. Res. Mech. Eng. (JCARME)., vol. 9, pp. 59–75, 2019.
  • C. Qi, S. Yang, and F. Dong, Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading, Thin-Walled Struct., vol. 59, pp. 103–119, 2012. DOI: 10.1016/j.tws.2012.05.008.
  • X. Zhang, G. Cheng, and H. Zhang, Theoretical prediction and numerical simulation of multi-cell square thin-walled structures, Thin-Walled Struct., vol. 44, pp. 1185–1191, 2006. DOI: 10.1016/j.tws.2006.09.002.
  • N. Qiu, Y. Gao, J. Fang, Z. Feng, G. Sun, and Q. Li, Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases, Finite Elem. Anal. Des., vol. 104, pp. 89–101, 2015. DOI: 10.1016/j.finel.2015.06.004.
  • X. Zhang, K. Leng, and H. Zhang, Axial crushing of embedded multi-cell tubes, Int. J. Mech. Sci., vol. 131, pp. 459–470, 2017. DOI: 10.1016/j.ijmecsci.2017.07.019.
  • A. A. Nia, and M. Parsapour, Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections, Thin-Walled Struct., vol. 74, pp. 155–165, 2014. DOI: 10.1016/j.tws.2013.10.005.
  • T. Tran, Crushing and theoretical analysis of multi-cell thin-walled triangular tubes under lateral loading, Thin-Walled Struct., vol. 115, pp. 205–214, 2017. DOI: 10.1016/j.tws.2017.02.027.
  • A. Najafi, and M. Rais-Rohani, Mechanics of axial plastic collapse in multi-cell, multi-corner crush tubes, Thin-Walled Struct., vol. 49, pp. 1–12, 2011. DOI: 10.1016/j.tws.2010.07.002.
  • A. Mahmoodi, M. Shojaeefard, and H. S. Googarchin, Theoretical development and numerical investigation on energy absorption behavior of tapered multi-cell tubes, Thin-Walled Struct., vol. 102, pp. 98–110, 2016. DOI: 10.1016/j.tws.2016.01.019.
  • N. Qiu, Y. Gao, J. Fang, Z. Feng, G. Sun, and Q. Li, Theoretical prediction and optimization of multi-cell hexagonal tubes under axial crashing, Thin-Walled Struct., vol. 102, pp. 111–121, 2016. DOI: 10.1016/j.tws.2016.01.023.
  • J. Zhou, R. Qin, and B. Chen, Energy absorption properties of multi-cell thin-walled tubes with a double surface gradient, Thin-Walled Struct., vol. 145, pp. 106386, 2019. DOI: 10.1016/j.tws.2019.106386.
  • T. Tran, and A. Baroutaji, Crashworthiness optimal design of multi-cell triangular tubes under axial and oblique impact loading, Eng. Fail. Anal., vol. 93, pp. 241–256, 2018. DOI: 10.1016/j.engfailanal.2018.07.003.
  • S. Pirmohammad, and S. Esmaeili-Marzdashti, Multi-objective optimization of multi-cell conical structures under dynamic loads, J. Central South Univ., vol. 26, pp. 2464–2481, 2019. DOI: 10.1007/s11771-019-4187-3.
  • S. Pirmohammad, and S. Esmaeili-Marzdashti, Crushing behavior of new designed multi-cell members subjected to axial and oblique quasi-static loads, Thin-Walled Struct., vol. 108, pp. 291–304, 2016. DOI: 10.1016/j.tws.2016.08.023.
  • S. Pirmohammad, and S. Esmaeili Marzdashti, Crashworthiness optimization of combined straight-tapered tubes using genetic algorithm and neural networks, Thin-Walled Struct., vol. 127, pp. 318–332, 2018. DOI: 10.1016/j.tws.2018.01.022.
  • S. Pirmohammad, and H. Nikkhah, Crashworthiness investigation of bitubal columns reinforced with several inside ribs under axial and oblique impact loads, Proc. Inst. Mech. Eng., vol. 232, pp. 367–383, 2018. DOI: 10.1177/0954407017702986.
  • S. Esmaeili-Marzdashti, S. Pirmohammad, and S. Esmaeili-Marzdashti, Crashworthiness analysis of s-shaped structures under axial impact loading, Latin Am. J. Solids Struct., vol. 14, pp. 743–764, 2017. DOI: 10.1590/1679-78253430.
  • T. Tran, S. Hou, X. Han, W. Tan, and N. T. Nguyen, Theoretical prediction and crashworthiness optimization of multi-cell triangular tubes, Thin-Walled Struct., vol. 82, pp. 183–195, 2014. DOI: 10.1016/j.tws.2014.03.019.
  • T. Tran, S. Hou, X. Han, N. Nguyen, and M. Chau, Theoretical prediction and crashworthiness optimization of multi-cell square tubes under oblique impact loading, Int. J. Mech. Sci., vol. 89, pp. 177–193, 2014. DOI: 10.1016/j.ijmecsci.2014.08.027.
  • T. Tran, S. Hou, X. Han, and M. Chau, Crushing analysis and numerical optimization of angle element structures under axial impact loading, Compos. Struct., vol. 119, pp. 422–435, 2015. DOI: 10.1016/j.compstruct.2014.09.019.
  • E. Acar, M. Altin, and M. A. Güler, Evaluation of various multi-cell design concepts for crashworthiness design of thin-walled aluminum tubes, Thin-Walled Struct., vol. 142, pp. 227–235, 2019. DOI: 10.1016/j.tws.2019.05.012.
  • Z. Li, W. Ma, L. Hou, P. Xu, and S. Yao, Crashworthiness analysis of corrugations reinforced multi-cell square tubes, Thin-Walled Struct., vol. 150, pp. 106708, 2020. DOI: 10.1016/j.tws.2020.106708.
  • H. Nikkhah, A. Baroutaji, Z. Kazancı, and A. Arjunan, Evaluation of crushing and energy absorption characteristics of bio-inspired nested structures, Thin-Walled Struct., vol. 148, pp. 106615, 2020. DOI: 10.1016/j.tws.2020.106615.
  • K. Yang, S. Xu, S. Zhou, and Y. M. Xie, Multi-objective optimization of multi-cell tubes with origami patterns for energy absorption, Thin-Walled Struct., vol. 123, pp. 100–113, 2018. DOI: 10.1016/j.tws.2017.11.005.
  • M. Altin, Ü. Kılınçkaya, E. Acar, and M. A. Güler, Investigation of combined effects of cross section, taper angle and cell structure on crashworthiness of multi-cell thin-walled tubes, Int. J. Crashworthiness, vol. 24, pp. 121–136, 2019. DOI: 10.1080/13588265.2017.1410338.
  • L. Zhang, Z. Bai, and F. Bai, Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections, Thin-Walled Struct., vol. 122, pp. 42–51, 2018. DOI: 10.1016/j.tws.2017.10.010.
  • M. Altin, M. A. Güler, and S. K. Mert, The effect of percent foam fill ratio on the energy absorption capacity of axially compressed thin-walled multi-cell square and circular tubes, Int. J. Mech. Sci., vol. 131, pp. 368–379, 2017. DOI: 10.1016/j.ijmecsci.2017.07.003.
  • S. Pirmohammad, Crashworthiness performance of concentric structures with different cross-sectional shapes under multiple loading conditions, Proc. Inst. Mech. Eng., 2021. 235: 417–435.
  • S. Xie, W. Yang, N. Wang, and H. Li, Crashworthiness analysis of multi-cell square tubes under axial loads, Int. J. Mech. Sci., vol. 121, pp. 106–118, 2017. DOI: 10.1016/j.ijmecsci.2016.12.005.
  • H. Yin, G. Wen, Z. Bai, Z. Chen, and Q. Qing, Theoretical prediction and crashworthiness optimization of multi-cell polygonal tubes, J. Sandwich Struct. Mater., vol. 22, pp. 190–219, 2020. DOI: 10.1177/1099636217737330.
  • H. Yin, and G. Wen, Theoretical prediction and numerical simulation of honeycomb structures with various cell specifications under axial loading, Int. J. Mech. Mater. Des., vol. 7, pp. 253–263, 2011. DOI: 10.1007/s10999-011-9163-5.
  • C. L. Hwang, and K. Yoon, Methods for multiple attribute decision making, Multiple Attribute Decision Making, Springer, Berlin, Heidelberg, pp. 58–191, 1981.
  • K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., vol. 6, pp. 182–197, 2002. DOI: 10.1109/4235.996017.
  • X. Liao, Q. Li, X. Yang, W. Li, and W. Zhang, A two-stage multi-objective optimisation of vehicle crashworthiness under frontal impact, Int. J. Crashworthiness, vol. 13, pp. 279–288, 2008. DOI: 10.1080/13588260801933659.
  • J. D. Knowles, and D. W. Corne, Approximating the nondominated front using the Pareto archived evolution strategy, Evol. Comput., vol. 8, pp. 149–172, 2000. DOI: 10.1162/106365600568167.
  • G. Sun, G. Li, M. Stone, and Q. Li, A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials, Comput. Mater. Sci., vol. 49, pp. 500–511, 2010. DOI: 10.1016/j.commatsci.2010.05.041.
  • G. Zheng, T. Pang, G. Sun, S. Wu, and Q. Li, Theoretical, numerical, and experimental study on laterally variable thickness (LVT) multi-cell tubes for crashworthiness, Int. J. Mech. Sci., vol. 118, pp. 283–297, 2016. DOI: 10.1016/j.ijmecsci.2016.09.015.
  • N. Qiu, Y. Gao, J. Fang, G. Sun, Q. Li, and N. H. Kim, Crashworthiness optimization with uncertainty from surrogate model and numerical error, Thin-Walled Struct., vol. 129, pp. 457–472, 2018. DOI: 10.1016/j.tws.2018.05.002.
  • J. Wang, Y. Zhang, N. He, et al., Crashworthiness behavior of Koch fractal structures, Mater. Des., vol. 144, pp. 229–244, 2018. DOI: 10.1016/j.matdes.2018.02.035.
  • Z. Tang, S. Liu, and Z. Zhang, Analysis of energy absorption characteristics of cylindrical multi-cell columns, Thin-Walled Struct., vol. 62, pp. 75–84, 2013. DOI: 10.1016/j.tws.2012.05.019.
  • W. Liu, Z. Lin, J. He, N. Wang, and X. Deng, Crushing behavior and multi-objective optimization on the crashworthiness of sandwich structure with star-shaped tube in the center, Thin-Walled Struct., vol. 108, pp. 205–214, 2016. DOI: 10.1016/j.tws.2016.08.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.