498
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Stress-constrained thermo-elastic topology optimization of axisymmetric disks considering temperature-dependent material properties

, , , &
Pages 7459-7475 | Received 24 Aug 2021, Accepted 26 Oct 2021, Published online: 12 Nov 2021

References

  • A. Entezari, M.A. Kouchakzadeh, E. Carrera, and M. Filippi, A refined finite element method for stress analysis of rotors and rotating disks with variable thickness, Acta Mech., vol. 228, no. 2, pp. 575–594, 2017. DOI: 10.1007/s00707-016-1727-x.
  • M.T. Tong, I. Halliwell, and L.J. Ghosn, A computer code for gas turbine engine weight and disk life estimation, J. Eng. Gas Turbines Power, vol. 126, no. 2, pp. 265–270, 2004. DOI: 10.1115/1.1691980.
  • J.D. Mattingly, Aircraft Engine Design, AIAA, New York, 2018.
  • A. Entezari, M. Filippi, and E. Carrera, On dynamic analysis of variable thickness disks and complex rotors subjected to thermal and mechanical prestresses, J. Sound Vib., vol. 405, no. 8, pp. 68–85, 2017. DOI: 10.1016/j.jsv.2017.05.039.
  • T. Sadowski and P. Golewski, The influence of quantity and distribution of cooling channels of turbine elements on level of stresses in the protective layer TBC and the efficiency of cooling, Comput. Mater. Sci., vol. 52, no. 1, pp. 293–297, 2012. DOI: 10.1016/j.commatsci.2011.02.027.
  • R.C. Rice, Metallic Materials Properties Development and Standardization. Technique Report, FAA Report Number AR-MMPDS-01, National Technical Information Service Alexandria, Virginia, 2003.
  • S. Kodiyalam, V. Kumar, and P.M. Finnigan, Constructive solid geometry approach to three-dimensional structuralshape optimization, AIAA J., vol. 30, no. 5, pp. 1408–1415, 1992. DOI: 10.2514/3.11077.
  • S.C. Mohan and D.K. Maiti, Structural optimization of rotating disk using response surface equation and genetic algorithm, Int. J. Comput. Methods Eng. Sci. Mech., vol. 14, no. 2, pp. 124–132, 2013. DOI: 10.1080/15502287.2012.698712.
  • S.S. Bhavikatti and C.V. Ramakrishnan, Optimum-shape design of rotating-disks, Comput. Struct., vol. 11, no. 5, pp. 397–401, 1980. DOI: 10.1016/0045-7949(80)90105-4.
  • L. Meng, W.H. Zhang, J.H. Zhu, Z. Xu, and S.H. Cai, Shape optimization of axisymmetric solids with the finite cell method using a fixed grid, Acta Mech. Sin., vol. 32, no. 3, pp. 510–524, 2016. DOI: 10.1007/s10409-015-0549-8.
  • V. Kale, M. Thomas, and M. Secanell, On determining the optimal shape, speed, and size of metal flywheel rotors with maximum kinetic energy, Struct. Multidiscip. Optim., vol. 125, no. 12, pp. 108–126, 2021.
  • L. Meng, W.H. Zhang, J.H. Zhu, and L. Xia, A biarc-based shape optimization approach to reduce stress concentration effects, Acta Mech. Sin., vol. 30, no. 3, pp. 370–382, 2014. DOI: 10.1007/s10409-014-0053-6.
  • T.C. Cheu, Sensitivity analysis and shape optimization of axisymmetric structures, Int. J. Numer. Meth. Engng., vol. 28, no. 1, pp. 95–108, 1989. DOI: 10.1002/nme.1620280108.
  • D.L. Cui, G.Q. Feng, P. Zhou, and Y.J. Zhang, Parametric design-based multi-objective optimisation for high-pressure turbine disc, Int. J. Prod. Res., vol. 55, no. 17, pp. 4847–4861, 2017. DOI: 10.1080/00207543.2016.1259669.
  • B.Y. Lee and B.M. Kwak, Axisymmetric thermoelastic shape sensitivity analysis and its application to turbine disc design, Int. J. Numer. Meth. Engng., vol. 33, no. 10, pp. 2073–2089, 1992. DOI: 10.1002/nme.1620331006.
  • Y. Gu and G. Cheng, Structural modelling and sensitivity analysis of shape optimization, Struct. Optim., vol. 6, no. 1, pp. 29–37, 1993. DOI: 10.1007/BF01743172.
  • D.P. Gutzwiller and M.G. Turner, Rapid low fidelity turbomachinery disk optimization, Adv. Eng. Softw., vol. 41, no. 5, pp. 779–791, 2010. DOI: 10.1016/j.advengsoft.2009.12.019.
  • S. Nagendra, J.B. Staubach, A.J. Suydam, S.J. Ghunakikar, and V.R. Akula, Optimal rapid multidisciplinary response networks: RAPIDDISK, Struct. Multidisc. Optim., vol. 29, no. 3, pp. 213–231, 2005. DOI: 10.1007/s00158-004-0472-2.
  • Z.J. Huang, C.G. Wang, J.A. Chen, and H. Tian, Optimal design of aeroengine turbine disc based on kriging surrogate models, Comput. Struct., vol. 89, no. 1–2, pp. 27–37, 2011. DOI: 10.1016/j.compstruc.2010.07.010.
  • R.R. Cairo and K.A. Sargent, Twin web disk a step beyond convention, J. Eng. Gas Turbines Power, vol. 124, no. 2, pp. 298–302, 2002. DOI: 10.1115/1.1445440.
  • M.C. Zhang, W.X. Gou, L. Li, X.M. Wang, and Z.F. Yue, Multidisciplinary design and optimization of the twin-web turbine disk, Struct. Multidisc. Optim., vol. 53, no. 5, pp. 1129–1141, 2016. DOI: 10.1007/s00158-015-1373-2.
  • Q. Yao, M. Zhang, Y. Liu, and Q. Guo, Life reliability assessment of twin-web disk using the active learning kriging model, Struct. Multidisc. Optim., vol. 61, no. 3, pp. 1229–1251, 2020. DOI: 10.1007/s00158-019-02395-4.
  • X.L. Shen, W.T. Hu, and S.J. Dong, Multidisciplinary and multifidelity optimization for twin-web turbine disc with asymmetric temperature distribution, Struct. Multidisc. Optim., vol. 60, no. 2, pp. 803–816, 2019. DOI: 10.1007/s00158-019-02237-3.
  • L. Li, Z. Tang, H. Li, F. Tong, and W. Gao, Multidisciplinary design optimization of twin-web turbine disk with pin fins in inner cavity, Appl. Therm. Eng., vol. 161, no. 2, pp. 114104–114130, 2019. DOI: 10.1016/j.applthermaleng.2019.114104.
  • X.L. Shen and S.J. Dong, Structure optimization and welding residual stress analysis of twin-web turbine disc, AMR., vol. 622–623, no. 8, pp. 309–314, 2012. DOI: 10.4028/www.scientific.net/AMR.622-623.309.
  • B. Vasilyev, L. Magerramova, A. Salnikov, N. Tsykunov, V. Isakov, and A. Semenov, Twin-web turbine discs: Part 2 fabrication and processing, Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 7A: Structures and Dynamics, V07AT30A007, ASME, June 11–15, Oslo, Norway, 2018.
  • M. Al Khalil, N. Lebaal, F. Demoly, and S. Roth, A design and optimization framework of variable-density lattice structures for additive manufacturing, Mech. Adv. Mater. Struct., vol. 128, no. 3, pp. 1–15, 2021. DOI: 10.1080/15376494.2021.1936704.
  • G. Qi, B. Ji, and L. Ma, Mechanical response of pyramidal lattice truss core sandwich structures by additive manufacturing, Mech. Adv. Mater. Struct., vol. 26, no. 15, pp. 1298–1306, 2019. DOI: 10.1080/15376494.2018.1432805.
  • L.J. Kumar and N.C.G. Krishnadas, Current trends of additive manufacturing in the aerospace industry. In: D. Wimpenny, P. Pandey and L. Kumar (eds.), Advances in 3D Printing & Additive Manufacturing Technologies. Springer, Singapore, 2017.
  • M. Godec, S. Malej, D. Feizpour, Č. Donik, M. Balažic, D. Klobčar, L. Pambaguian, M. Conradi, and A. Kocijan, Hybrid additive manufacturing of Inconel 718 for future space applications, Mater. Charact., vol. 172, no. 4, pp. 110842–110126, 2021. DOI: 10.1016/j.matchar.2020.110842.
  • J. Zhu, H. Zhou, C. Wang, L. Zhou, S. Yuan, and W. Zhang, A review of topology optimization for additive manufacturing: Status and challenges, Chin. J. Aeronaut., vol. 34, no. 1, pp. 91–110, 2021. DOI: 10.1016/j.cja.2020.09.020.
  • G. Costa, M. Montemurro, and J. Pailhès, NURBS hyper-surfaces for 3D topology optimization problems, Mech. Adv. Mater. Struct., vol. 28, no. 7, pp. 665–684, 2021. DOI: 10.1080/15376494.2019.1582826.
  • D. Zhang, Y. Wu, X. Lu, and L. Zheng, Topology optimization of constrained layer damping plates with frequency- and temperature-dependent viscoelastic core via parametric level set method, Mech. Adv. Mater. Struct., vol. 127, no. 12, pp. 1–17, 2021. DOI: 10.1080/15376494.2021.1938302.
  • N. Chattaraj, G.K. Ananthasuresh, and R. Ganguli, Design of a distributed compliant mechanism using spring-lever model and topology optimization for piezoelectrically actuated flapping wings, Mech. Adv. Mater. Struct., vol. 28, no. 2, pp. 118–126, 2021. DOI: 10.1080/15376494.2018.1549295.
  • H. Li, H. Li, M. Xiao, Y. Zhang, J. Fu, and L. Gao, Robust topology optimization of thermoelastic metamaterials considering hybrid uncertainties of material property, Compos. Struct., vol. 248, pp. 112477, 2020. DOI: 10.1016/j.compstruct.2020.112477.
  • S. Chu, L. Gao, M. Xiao, Z. Luo, and H. Li, Stress-based multi-material topology optimization of compliant mechanisms, Int. J. Numer. Meth. Engng., vol. 113, no. 7, pp. 1021–1044, 2018. DOI: 10.1002/nme.5697.
  • H. Li, L. Gao, H. Li, X. Li, and H. Tong, Full-scale topology optimization for fiber-reinforced structures with continuous fiber paths, Comput. Methods Appl. Mech. Eng., vol. 377, pp. 113668, 2021. DOI: 10.1016/j.cma.2021.113668.
  • H. Li, Z. Luo, L. Gao, and Q. Qin, Topology optimization for concurrent design of structures with multi-patch microstructures by level sets, Comput. Methods Appl. Mech. Eng., vol. 331, pp. 536–561, 2018. DOI: 10.1016/j.cma.2017.11.033.
  • X. Shen, S. Dong, and Z. Chen, Research of an advanced turbine disk for high thrust-weight ratio engine, Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Vol. 7A: Structures and Dynamics, Düsseldorf, Germany, 2014. DOI: 10.1115/GT2014-25715.
  • E. Boccini, E. Meli, A. Rindi, L. Pinelli, L. Peruzzi, and A. Arnone, Towards structural topology optimization of rotor blisks, Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 7A: Structures and Dynamics, V07AT30A008, ASME, June 11–15, Oslo, Norway, 2018.
  • E. Boccini, R. Furferi, L. Governi, E. Meli, A. Ridolfi, A. Rindi, and Y. Volpe, Toward the integration of lattice structure-based topology optimization and additive manufacturing for the design of turbomachinery components, Adv. Mech. Eng., vol. 11, no. 8, pp. 168781401985978–168781401985926, 2019. DOI: 10.1177/1687814019859789.
  • A. Rindi, E. Meli, E. Boccini, G. Iurisci, S. Corbò, and S. Falomi, Static and modal topology optimization of turbomachinery components, J. Eng. Gas Turbines Power, vol. 138, no. 11, pp. 9–18, 2016. DOI: 10.1115/1.4033512.
  • J.S. Liu, G.T. Parks, and P.J. Clarkson, Optimization of turbine disk profiles by metamorphic development, J. Mech. Des., vol. 124, no. 2, pp. 192–200, 2002. DOI: 10.1115/1.1467079.
  • B.S. Lazarov and O. Sigmund, Filters in topology optimization based on Helmholtz-type differential equations, Int. J. Numer. Meth. Engng., vol. 86, no. 6, pp. 765–781, 2011. DOI: 10.1002/nme.3072.
  • O. Sigmund, Morphology-based black and white filters for topology optimization, Struct. Multidisc. Optim., vol. 33, no. 4–5, pp. 401–424, 2007. DOI: 10.1007/s00158-006-0087-x.
  • W.H. Zhang, J.G. Yang, Y.J. Xu, and T. Gao, Topology optimization of thermoelastic structures: Mean compliance minimization or elastic strain energy minimization, Struct. Multidisc. Optim., vol. 49, no. 3, pp. 417–429, 2014. DOI: 10.1007/s00158-013-0991-9.
  • Q. Meng, B. Xu, C. Wang, and L. Zhao, Stress constrained thermo-elastic topology optimization based on stabilizing control schemes, J. Therm. Stresses, vol. 43, no. 8, pp. 1040–1068, 2020. DOI: 10.1080/01495739.2020.1766391.
  • Q.X. Meng, B. Xu, C. Wang, and L. Zhao, Thermo-elastic topology optimization with stress and temperature constraints, Int. J. Numer. Meth. Engng., vol. 122, no. 12, pp. 2919–2944, 2021. DOI: 10.1002/nme.6646.
  • Y. Han, B. Xu, Q. Wang, and Y. Liu, Bi-directional evolutionary topology optimization of continuum structures subjected to inertial loads, Adv. Eng. Softw., vol. 155, no. 3, pp. 102897–102115, 2021. DOI: 10.1016/j.advengsoft.2020.102897.
  • M. Barringer, et al., The design of a steady aero thermal research turbine (START) for studying secondary flow leakages and airfoil heat transfer, Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Vol. 5C: Heat Transfer, V05CT16A013, ASME, June 16–20, Düsseldorf, Germany, 2014.
  • K.J. Bathe, Finite element procedures, Prentice Hall, Englewood Cliffs, New Jersey, 2006.
  • V. Ganine, U. Javiya, N. Hills, and J. Chew, Coupled fluid structure transient thermal analysis of a gas turbine internal air system with multiple cavities, J. Eng. Gas Turbines Power, vol. 134, no. 10, pp. 102–110, 2012. DOI: 10.1115/1.4007060.
  • M.P. Bendsoe and O. Sigmund, Material interpolation schemes in topology optimization, Arch. Appl. Mech., vol. 69, no. 910, pp. 635–654, 1999. DOI: 10.1007/s004190050248.
  • E.A. Thornton, Thermal Structures for Aerospace Applications, AIAA, Reston, Virginia, 1996.
  • D. Joshua and G. Ramana, Stiffening of thermally restrained structures via thermoelastic topology optimization, AIAA 2012-1751. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, April, 2012.
  • S. Xu, Y. Cai, and G. Cheng, Volume preserving nonlinear density filter based on heaviside functions, Struct. Multidisc. Optim., vol. 41, no. 4, pp. 495–505, 2010. DOI: 10.1007/s00158-009-0452-7.
  • O. Amir, Efficient stress constrained topology optimization using inexact design sensitivities, Int. J. Numer. Meth. Engng., vol. 122, no. 13, pp. 3241–3272, 2021. DOI: 10.1002/nme.6662.
  • M. Bruggi, On an alternative approach to stress constraints relaxation in topology optimization, Struct. Multidisc. Optim., vol. 36, no. 2, pp. 125–141, 2008. DOI: 10.1007/s00158-007-0203-6.
  • T. Roiné, M. Montemurro, and J. Pailhès, Stress-based topology optimization through non-uniform rational basis spline hyper-surfaces, Mech. Adv. Mater. Struct., vol. 128, no. 4, pp. 1–29, 2021. DOI: 10.1080/15376494.2021.1896822.
  • C. Le, J. Norato, T. Bruns, C. Ha, and D. Tortorelli, Stress-based topology optimization for continua, Struct. Multidisc. Optim., vol. 41, no. 4, pp. 605–620, 2010. DOI: 10.1007/s00158-009-0440-y.
  • K. Svanberg, The method of moving asymptotes a new method for structural optimization, Int. J. Numer. Meth. Engng., vol. 24, no. 2, pp. 359–373, 1987. DOI: 10.1002/nme.1620240207.
  • D. Yang, H. Liu, W. Zhang, and S. Li, Stress-constrained topology optimization based on maximum stress measures, Comput. Struct., vol. 198, pp. 23–39, 2018. DOI: 10.1016/j.compstruc.2018.01.008.
  • P.S. Tang and K.H. Chang, Integration of topology and shape optimization for design of structural components, Struct. Multidisc. Optim., vol. 22, no. 1, pp. 65–82, 2001. DOI: 10.1007/PL00013282.
  • D.P. Gutzwiller, Automated design, analysis, and optimization of turbomachinery disks, Master's degree thesis, University of Cincinnati, Cincinnati, Ohio, 2008.
  • R. Muraca and J. Whittick, Materials data handbook: Inconel alloy 718, Western Applied Research and Development, San Carlos, California, 1972.
  • A.R. Gersborg and C.S. Andreasen, An explicit parameterization for casting constraints in gradient driven topology optimization, Struct. Multidisc. Optim., vol. 44, no. 6, pp. 875–881, 2011. DOI: 10.1007/s00158-011-0632-0.
  • B. Wang, et al., A preliminary design method for axisymmetric turbomachinery disks based on topology optimization, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., vol. 146, no. 13, pp. 1–12.
  • S. Ding, G. Li, and B. Luo, Active control thermal-loading method to ameliorate stress in aeroengine turbine disk, J. Thermophys. Heat Transfer, vol. 27, no. 2, pp. 274–285, 2013. DOI: 10.2514/1.T3907.
  • P. Nayak and K. Saha, Elastic limit angular speed of solid and annular disks under thermomechanical loading, Int. J. Eng. Sci. Technol., vol. 8, no. 2, pp. 30–45, 2016. DOI: 10.4314/ijest.v8i2.3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.