244
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

The effects of plasticity mechanisms on micromechanics of composites with fiber waviness defects under compression

ORCID Icon, ORCID Icon &
Pages 7503-7518 | Received 12 Jul 2021, Accepted 26 Oct 2021, Published online: 25 Nov 2021

References

  • R. Talreja and J. Varna, Modeling Damage, Fatigue and Failure of Composite Materials, Woodhead Publishing, Cambridge, UK, 2015.
  • U. I. K. Galappaththi, A. Picket, M. Draskovic, M. Capellaro, and A. M. De Silva, The effect of ply waviness for the fatigue life of composite wind turbine blades, Renew. Energy Power Qual. J., vol. 1, no. 11, pp. 1195–1199, 2013. DOI: 10.24084/repqj11.574.
  • S. Hörrmann, A. Adumitroaie, C. Viechtbauer, and M. Schagerl, The effect of fiber waviness on the fatigue life of CFRP materials, Int. J. Fatigue., vol. 90, pp. 139–147, 2016. DOI: 10.1016/j.ijfatigue.2016.04.029.
  • B. Daum, N. Feld, O. Allix, and R. Rolfes, A review of computational modelling approaches to compressive failure in laminates, Compos. Sci. Technol., vol. 181, pp. 107663, 2019. DOI: 10.1016/j.compscitech.2019.05.020.
  • A. S. Argon, A theory for the low-temperature plastic deformation of glassy polymers, Philos. Mag., vol. 28, no. 4, pp. 839–865, 1973. DOI: 10.1080/14786437308220987.
  • B. Budiansky and N. A. Fleck, Compressive failure of fibre composites, J. Mech. Phys. Solids., vol. 41, no. 1, pp. 183–211, 1993. DOI: 10.1016/0022-5096(93)90068-Q.
  • M. Bishara, R. Rolfes, and O. Allix, Revealing complex aspects of compressive failure of polymer composites–Part I: fiber kinking at microscale, Compos. Struct., vol. 169, pp. 105–115, 2017. DOI: 10.1016/j.compstruct.2016.10.092.
  • S. Pimenta, R. Gutkin, S. T. Pinho, and P. Robinson, A micromechanical model for kink-band formation: Part I—experimental study and numerical modelling, Compos. Sci. Technol., vol. 69, no. 7-8, pp. 948–955, 2009. DOI: 10.1016/j.compscitech.2009.02.010.
  • O. Allix, N. Feld, E. Baranger, J. Guimard, and C. Ha-Minh, The compressive behaviour of composites including fiber kinking: modelling across the scales, Meccanica, vol. 49, no. 11, pp. 2571–2586, 2014. DOI: 10.1007/s11012-013-9872-y.
  • A. C. Bergan, M. Herráez, C. González, and C. S. Lopes, A constitutive model for fiber kinking: formulation, finite element implementation, and verification, Compos A., vol. 129, pp. 105682, 2020. DOI: 10.1016/j.compositesa.2019.105682.
  • A. C. Bergan and S. C. Garcea, In-situ observations of longitudinal compression damage in carbon-epoxy cross ply laminates using fast synchrotron radiation computed tomography, American Society for Composites 32nd Technical Conference, West Lafayette, Indiana, USA, 2017.
  • Y. Wang, Y. Chai, C. Soutis, and P. J. Withers, Evolution of kink bands in a notched unidirectional carbon fibre-epoxy composite under four-point bending, Compos. Sci. Technol., vol. 172, pp. 143–152, 2019. DOI: 10.1016/j.compscitech.2019.01.014.
  • P. Prabhakar and A. M. Waas, Interaction between kinking and splitting in the compressive failure of unidirectional fiber reinforced laminated composites, Compos. Struct., vol. 98, pp. 85–92, 2013. DOI: 10.1016/j.compstruct.2012.11.005.
  • R. Gutkin, S. T. Pinho, P. Robinson, and P. T. Curtis, Micro-mechanical modelling of shear-driven fibre compressive failure and of fibre kinking for failure envelope generation in CFRP laminates, Compos. Sci. Technol., vol. 70, no. 8, pp. 1214–1222, 2010. DOI: 10.1016/j.compscitech.2010.03.009.
  • M. Bishara, M. Vogler, and R. Rolfes, Revealing complex aspects of compressive failure of polymer composites–Part II: failure interactions in multidirectional laminates and validation, Compos. Struct., vol. 169, pp. 116–128, 2017. DOI: 10.1016/j.compstruct.2016.10.091.
  • F. Naya, et al., Computational micromechanics of fiber kinking in unidirectional FRP under different environmental conditions, Compos. Sci. Technol., vol. 144, pp. 26–35, 2017. DOI: 10.1016/j.compscitech.2017.03.014.
  • J. Lu and K. Ravi-Chandar, Inelastic deformation and localization in polycarbonate under tension, Int. J. Solids Struct., vol. 36, no. 3, pp. 391–425, 1999. DOI: 10.1016/S0020-7683(98)00004-3.
  • X. P. Morelle, J. Chevalier, C. Bailly, T. Pardoen, and F. Lani, Mechanical characterization and modeling of the deformation and failure of the highly crosslinked RTM6 epoxy resin, Mech. Time-Depend. Mater., vol. 21, no. 3, pp. 419–454, 2017. DOI: 10.1007/s11043-016-9336-6.
  • X. Poulain, A. A. Benzerga, and R. K. Goldberg, Finite-strain elasto-viscoplastic behavior of an epoxy resin: experiments and modeling in the glassy regime, Int. J. Plast., vol. 62, pp. 138–161, 2014. DOI: 10.1016/j.ijplas.2014.07.002.
  • M. Uchida, R. Wakuda, and Y. Kaneko, Evaluation and modeling of mechanical behaviors of thermosetting polymer under monotonic and cyclic tensile tests, Polymer, vol. 174, pp. 130–142, 2019. DOI: 10.1016/j.polymer.2019.04.064.
  • A. B. De Morais, Modelling lamina longitudinal compression strength of carbon fibre composite laminates, J. Compos. Mater., vol. 30, no. 10, pp. 1115–1131, 1996. DOI: 10.1177/002199839603001003.
  • R. R. Effendi, J.-J. Barrau, and D. Guedra-Degeorges, Failure mechanism analysis under compression loading of unidirectional carbon/epoxy composites using micromechanical modelling, Compos. Struct., vol. 31, no. 2, pp. 87–98, 1995. DOI: 10.1016/0263-8223(94)00060-3.
  • S.-Y. Hsu, T. J. Vogler, and S. Kyriakides, Compressive strength predictions for fiber composites, J. Appl. Mech., vol. 65, no. 1, pp. 7–16, 1998. DOI: 10.1115/1.2789050.
  • T. J. Vogler, S.-Y. Hsu, and S. Kyriakides, Composite failure under combined compression and shear, Int. J. Solids Struct., vol. 37, no. 12, pp. 1765–1791, 2000. DOI: 10.1016/S0020-7683(98)00323-0.
  • B. Wang, et al., Investigation on the longitudinal compressive strength of unidirectional carbon fiber/nanoparticles reinforced polymer composites using FFT-based method, Compos. Struct., vol. 247, pp. 112448, 2020. DOI: 10.1016/j.compstruct.2020.112448.
  • J. L. Wind, S. Steffensen, and H. M. Jensen, Comparison of a composite model and an individually fiber and matrix discretized model for kink band formation, Int. J. Non. Linear Mech., vol. 67, pp. 319–325, 2014. DOI: 10.1016/j.ijnonlinmec.2014.10.005.
  • C. S. Yerramalli and A. M. Waas, The effect of fiber diameter on the compressive strength of composites-A 3D finite element based study, Comput. Model. Eng. Sci., vol. 6, pp. 1–16, 2004.
  • Y. Yuan, X. Yao, K. Niu, B. Liu, and Q. Wuyun, Compressive failure of fiber reinforced polymer composites by imperfection, Compos. A., vol. 118, pp. 106–116, 2019. DOI: 10.1016/j.compositesa.2018.12.017.
  • J. H. Ahn and A. M. Waas, A micromechanics-based finite element model for compressive failure of notched uniply composite laminates under remote biaxial loads, J. Eng. Mater. Technol., vol. 121, no. 3, pp. 360–366, 1999. DOI: 10.1115/1.2812387.
  • T. Takahashi, M. Ueda, K. Iizuka, A. Yoshimura, and T. Yokozeki, Simulation on kink-band formation during axial compression of a unidirectional carbon fiber-reinforced plastic constructed by X-ray computed tomography images, Adv. Compos. Mater., vol. 28, no. 4, pp. 347–363, 2019. DOI: 10.1080/09243046.2018.1555387.
  • S. Krishnappa and S. Gururaja, January 2020. A numerical study on micromechanics of kink band formation, AIAA Scitech 2020, Forum, Orlando, Florida, USA, 0476.
  • Y. Qiao, Q. Zhang, and M. Salviato, Effects of in-situ stress state on the plastic deformation, fracture, and size scaling of thermoset polymers and related fiber-reinforced composites, ASC 35th Technical Conference, September, 2020.
  • S. Wei, G. Zhidong, L. I. Zengshan, M. Zhang, and Y. Huang, Compressive failure analysis of unidirectional carbon/epoxy composite based on micro-mechanical models, Chin. J. Aeronaut., vol. 30, no. 6, pp. 1907–1918, 2017. DOI: 10.1016/j.cja.2017.10.002.
  • C. P. R. Hoppel, T. A. Bogetti, and J. W. Gillespie, Jr. Literature review-effects of hydrostatic pressure on the mechanical behavior of composite materials, J. Thermoplast. Compos. Mater., vol. 8, no. 4, pp. 375–409, 1995. DOI: 10.1177/089270579500800403.
  • K. D. Pae and S. K. Bhateja, The effects of hydrostatic pressure on the mechanical behavior of polymers, J. Macromol. Sci. Rev. Macromol. Chem., vol. 13, no. 1, pp. 1–75, 1975. DOI: 10.1080/15321797508068145.
  • P. J. Hine, R. A. Duckett, A. S. Kaddour, M. J. Hinton, and G. M. Wells, The effect of hydrostatic pressure on the mechanical properties of glass fibre/epoxy unidirectional composites, Compos. A., vol. 36, no. 2, pp. 279–289, 2005. DOI: 10.1016/S1359-835X(04)00152-6.
  • T. Hayashi and T. Oya, Tensile and compression analyses to investigate the mesoscale mechanical characteristics influential for press formability of CFRP sheets, Mater. Sci Forum., vol. 920, pp. 217–222, 2018. DOI: 10.4028/www.scientific.net/MSF.920.217.
  • P. F. Liu, Z. H. Hu, S. B. Wang, and W. S. Liu, Finite element analysis of the void growth and interface failure of ductile adhesive joints, J. Fail. Anal. Prev., vol. 18, no. 2, pp. 291–303, 2018. DOI: 10.1007/s11668-018-0389-5.
  • X. Bai, et al., High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites, Compos. Struct., vol. 134, pp. 132–141, 2015. DOI: 10.1016/j.compstruct.2015.08.047.
  • A. R. Melro, P. P. Camanho, F. M. Andrade Pires, and S. T. Pinho, Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I–constitutive modelling, Int. J. Solids Struct., vol. 50, no. 11-12, pp. 1897–1905, 2013. DOI: 10.1016/j.ijsolstr.2013.02.009.
  • Q. Sun, et al., Experimental and computational analysis of failure mechanisms in unidirectional carbon fiber reinforced polymer laminates under longitudinal compression loading, Compos. Struct., vol. 203, pp. 335–348, 2018. DOI: 10.1016/j.compstruct.2018.06.028.
  • Z. Ullah, L. Kaczmarczyk, and C. J. Pearce, Three-dimensional nonlinear micro/meso-mechanical response of the fibre-reinforced polymer composites, Compos. Struct., vol. 161, pp. 204–214, 2017. DOI: 10.1016/j.compstruct.2016.11.059.
  • A. Bergan, M. Herráez, C. González, and C. Lopes. Development of a mesoscale finite element constitutive model for fiber kinking, 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, Florida, USA, 1221, January 2018.
  • M. Herráez, A. C. Bergan, C. S. Lopes, and C. González, Computational micromechanics model for the analysis of fiber kinking in unidirectional fiber-reinforced polymers, Mech. Mater., vol. 142, pp. 103299, 2020. DOI: 10.1016/j.mechmat.2019.103299.
  • P. Davidson and A. Waas. Effects of out of plane stress on progressive kinking in internal zero plies, Proceedings of the American Society for Composites—Thirty-Third Technical Conference, Seattle, Washington, USA, September 2018.
  • T. J. Vogler, S.-Y. Hsu, and S. Kyriakides, On the initiation and growth of kink bands in fiber composites. Part II: analysis, Int. J. Solids Struct., vol. 38, no. 15, pp. 2653–2682, 2001. DOI: 10.1016/S0020-7683(00)00175-X.
  • A. S. Kaddour and M. J. Hinton, Input data for test cases used in benchmarking triaxial failure theories of composites, J. Compos. Mater., vol. 46, no. 19-20, pp. 2295–2312, 2012. DOI: 10.1177/0021998312449886.
  • ABAQUS Simulia User Assistance 2019. ABAQUS Manual. In: Abaqus - Elements - Special Purpose Elements - Cohesive Elements - Defining Constitutive Response of Cohesive Elements Using a Traction-Separation Description. Dassault Systèmes Simulia Corp USA, Providence, RI, USA, 2019.
  • M. Kenane and M. L. Benzeggagh, Mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading, Compos. Sci. Technol., vol. 57, no. 5, pp. 597–605, 1997. DOI: 10.1016/S0266-3538(97)00021-3.
  • D. C. Drucker and W. Prager, Soil mechanics and plastic analysis or limit design, Quart. Appl. Math., vol. 10, no. 2, pp. 157–165, 1952. DOI: 10.1090/qam/48291.
  • A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I—yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., vol. 99, no. 1, pp. 2–15, 1977. DOI: 10.1115/1.3443401.
  • V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fract., vol. 17, no. 4, pp. 389–407, 1981. DOI: 10.1007/BF00036191.
  • J. Rojek, C. Breite, Y. Swolfs, and L. Laiarinandrasana, Void growth measurement and modelling in a thermosetting epoxy resin using SEM and tomography techniques, Continuum Mech. Thermodyn., vol. 32, no. 2, pp. 471–488, 2020. DOI: 10.1007/s00161-020-00865-5.
  • Z. Meng, M. A. Bessa, W. Xia, W. K. Liu, and S. Keten, Predicting the macroscopic fracture energy of epoxy resins from atomistic molecular simulations, Macromolecules., vol. 49, no. 24, pp. 9474–9483, 2016. DOI: 10.1021/acs.macromol.6b01508.
  • X. M. N. Poulain, On the Thermomechanical Behavior of Epoxy Polymers: Experiments and Modeling, Doctoral thesis, Texas A&M University, College Station, Texas, USA, 2010.
  • M. P. F. Sutcliffe and N. A. Fleck, Microbuckle propagation in carbon fibre-epoxy composites, Acta Metall. Mater., vol. 42, no. 7, pp. 2219–2231, 1994. DOI: 10.1016/0956-7151(94)90301-8.
  • J. Lee and C. Soutis, A study on the compressive strength of thick carbon fibre–epoxy laminates, Compos. Sci. Technol., vol. 67, no. 10, pp. 2015–2026, 2007. DOI: 10.1016/j.compscitech.2006.12.001.
  • R. Gutkin, S. T. Pinho, P. Robinson, and P. T. Curtis, On the transition from shear-driven fibre compressive failure to fibre kinking in notched CFRP laminates under longitudinal compression, Compos. Sci. Technol., vol. 70, no. 8, pp. 1223–1231, 2010. DOI: 10.1016/j.compscitech.2010.03.010.
  • M. Ueda, K. Mimura, and T.-K. Jeong, In situ observation of kink-band formation in a unidirectional carbon fiber reinforced plastic by X-ray computed tomography imaging, Adv. Compos. Mater., vol. 25, no. 1, pp. 31–43, 2016. DOI: 10.1080/09243046.2014.973173.
  • Y. Wang, et al., X-ray computed tomography study of kink bands in unidirectional composites, Compos. Struct., vol. 160, pp. 917–924, 2017. DOI: 10.1016/j.compstruct.2016.10.124.
  • P. Diaz Montiel, S. Venkataraman, and H. Kim. Modeling polymer-matrix composites with fiber waviness defects under cyclic loading, AIAA Scitech 2021 Forum, 1232, January 2021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.