280
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Optimal reliable design of brake disk using a Kriging surrogate model

, &
Pages 7569-7578 | Received 13 Sep 2021, Accepted 02 Nov 2021, Published online: 10 Dec 2021

References

  • G. M. Nathi, T. N. Charyulu, K. Gowtham, and P. Satish Reddy, Coupled structural/thermal analysis of disc brake, IJRET., vol. 01, no. 04, pp. 539–553, 2012. DOI: 10.15623/ijret.2012.0104004.
  • T. V. Manjunath, and P. M. Suresh, Structural and thermal analysis of rotor disc of disc brake, Int. J. Innovative Res. Sci. Eng. Technol., vol. 2, no. 12, pp. 7741–7749, 2013.
  • S. Sarip, Design development of lightweight disc brake for regenerative braking-finite element analysis, IJAPM., vol. 3, no. 1, pp. 52–58, 2013. DOI: 10.7763/IJAPM.2013.V3.173.
  • A. Chen, and F. Kienhöfer, The failure prediction of a brake disc due to nonthermal or mechanical stresses, Eng. Fail. Anal., vol. 124, pp. 105319, 2021. DOI: 10.1016/j.engfailanal.2021.105319.
  • A. Cabboi, and J. Woodhouse, Identifying short-term variation of dynamic friction by means of its frequency response function, J. Sound Vib., vol. 472, pp. 115212, 2020. DOI: 10.1016/j.jsv.2020.115212.
  • W. Sawczuk, D. Ulbrich, J. Kowalczyk, and A. Merkisz-Guranowska, Evaluation of wear of disc brake friction linings and the variability of the friction coefficient on the basis of vibroacoustic signals, Sensors, vol. 21, no. 17, pp. 5927, 2021. DOI: 10.3390/s21175927.
  • A. Papinniemi, J.C.S. Lai, and J. Zhao, Disc brake squeal: progress and challenges, ICSV14, Cairns, Australia, 2007.
  • M. Kuciej, The comparable analysis of temperature distributions assessment in disc brake obtained using analytical method and fe model, J. Kones, vol. 18, pp. 235–259, 2011.
  • V. Chengal Reddy, M. Gunasekhar Reddy, and G. Harinath Gowd, Modeling and analysis of fsae car disc brake using fem, Int. J. Emerging Technol. Adv. Eng., vol. 3, no. 9, pp. 383–389, 2013.
  • Z. Wang, J. Han, J. P. Domblesky, Z. Li, X. Fan, and X. Liu, Crack propagation and microstructural transformation on the friction surface of a high-speed railway brake disc, Wear, vol. 428-429, pp. 45–54, 2019. DOI: 10.1016/j.wear.2019.01.124.
  • W. Sawczuk, Analytical model coefficient of friction (cof) of rail disc brake on the basis of multi-phase stationary tests, Eksploatacja i Niezawodność., vol. 20, no. 1, pp. 57–67, 2018.
  • F. Talati, and S. Jalalifar, Investigation of heat transfer phenomena in a ventilated disk brake rotor with straight radial rounded vanes, J. of Appl. Sci., vol. 8, no. 20, pp. 3583–3592, 2008. DOI: 10.3923/jas.2008.3583.3592.
  • B. Ali, and B. Mostefa, Thermal behavior of dry contacts in the brake discs, IJAE., vol. 3, no. 1, pp. 9–17, 2012. DOI: 10.20485/jsaeijae.3.1_9.
  • H. B. Yan, S. S. Feng, X. H. Yang, and T. J. Lu, Role of cross-drilled holes in enhanced cooling of ventilated brake discs, Appl. Therm. Eng., vol. 91, pp. 318–333, 2015. DOI: 10.1016/j.applthermaleng.2015.08.042.
  • G. Kharmanda, A. Mohamed, and M. Lemaire, Efficient reliability-based design optimization using hybrid space with application to finite element analysis, Struct. Multidisc. Optim., vol. 24, no. 3, pp. 233–245, 2002. DOI: 10.1007/s00158-002-0233-z.
  • G. Kharmanda, S. Sharabatey, H. Ibrahim, A. Makhloufi, and A. El Hami, Reliability-based design optimization using semi-numerical strategies for structural engineering applications, Int. J. CAD/CAM, vol. 9, pp. 1–16, 2009.
  • Hui Lü, and Dejie Yu, Optimization design of a disc brake system with hybrid uncertainties, Adv. Eng. Softw., vol. 98, pp. 112–122, 2016. DOI: 10.1016/j.advengsoft.2016.04.009.
  • K. Dammak, A. El Hami, S. Koubaa, L. Walha, and M. Haddar, Reliability based design optimization of coupled acoustic-structure system using generalized polynomial chaos, Int. J. Mech. Sci., vol. 134, pp. 75–84, 2017. DOI: 10.1016/j.ijmecsci.2017.10.003.
  • A. Yaich, G. Kharmanda, A. El Hami, L. Walha, and M. Haddar, Reliability based design optimization for multiaxial fatigue damage analysis using robust hybrid method, J. Mech., vol. 44, pp. 1–16, 2017.
  • K. Dammak, A. Yaich, A. El Hami, L. Walha, and M. Haddar, An efficient optimization based on the robust hybrid method for the coupled acoustic–structural system, Mech. Adv. Mater. Struct., vol. 27, no. 21, pp. 1816–1826, 2020. DOI: 10.1080/15376494.2018.1525629.
  • A. Kamel, K. Dammak, M. Yangui, A. El Hami, M. B. Jdidia, L. Hammami, and M. Haddar, A reliability optimization of a coupled soil structure interaction applied to an offshore wind turbine, Appl. Ocean Res., vol. 113, pp. 102641, 2021. DOI: 10.1016/j.apor.2021.102641.
  • B. Debich, A. El Hami, A. Yaich, W. Gafsi, L. Walha, and M. Haddar, An efficient reliability-based design optimization study for pcm-based heat-sink used for cooling electronic devices, Mech. Adv. Mater. Struct., pp. 1–13, 2020. DOI: 10.1080/15376494.2020.1836291.
  • B. Debich, A. Yaich, K. Dammak, A. El Hami, W. Gafsi, L. Walha, and M. Haddar, Integration of multi-objective reliability-based design optimization into thermal energy management: Application on phase change material-based heat sinks, J. Storage. Mater., vol. 41, pp. 102906, 2021. DOI: 10.1016/j.est.2021.102906.
  • A. Kamel, K. Dammak, A. El Hami, M. Ben Jdidia, L. Hammami, and M. Haddar, A modified hybrid method for a reliability-based design optimization applied to an offshore wind turbine, Mech. Adv. Mater. Struct., pp. 1–14, 2020. DOI: 10.1080/15376494.2020.1811927.
  • K. Dammak, and A. El Hami, Thermal reliability-based design optimization using kriging model of pcm based pin fin heat sink, Int. J. Heat Mass Transfer, vol. 166, pp. 120745, 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120745.
  • K. Dammak, and A. El Hami, Multi-objective reliability based design optimization of coupled acoustic-structural system, Eng. Struct., vol. 197, pp. 109389, 2019. DOI: 10.1016/j.engstruct.2019.109389.
  • A. Forrester, A. Sobester, and A. Keane, Engineering design via surrogate modelling: a practical guide, Wiley, New York, 2008.
  • R. Jin, X. Du, and W. Chen, The use of metamodeling techniques for optimization under uncertainty, Struct. Multidiscip. Optim., no. 2, vol. 25, pp. 99–116, 2003. DOI: 10.1007/s00158-002-0277-0.
  • S. Dey, T. Mukhopadhyay, and S. Adhikari, Metamodel based high-fidelity stochastic analysis of composite laminates: A concise review with critical comparative assessment, Compos. Struct., vol. 171, pp. 227–250, 2017. DOI: 10.1016/j.compstruct.2017.01.061.
  • F. Abid, L. Walha, and M. Haddar, Surrogate models for uncertainty analysis of micro-actuator, Microsyst. Technol. no. 8, vol. 26, pp. 2589–2512, 2020. DOI: 10.1007/s00542-020-04799-5.
  • P.D. Pantula, S.S. Miriyala, and K. Mitra, Kernel: enabler to build smart surrogates for online optimization and knowledge discovery, Mater. Manuf. Processes., vol. 32, no. 10, pp. 1162–1171, 2017. DOI: 10.1080/10426914.2016.1269918.
  • P.D. Pantula, and K. Mitra, A data-driven approach towards finding closer estimates of optimal solutions under uncertainty for an energy efficient steel casting process, Energy, vol. 189, pp. 116253, 2019. DOI: 10.1016/j.energy.2019.116253.
  • P.D. Pantula, and K. Mitra, Towards efficient robust optimization using data based optimal segmentation of uncertain space, Reliab. Eng. Syst. Saf., vol. 197, pp. 106821, 2020. DOI: 10.1016/j.ress.2020.106821.
  • K. Dammak, and A. El Hami, Multi-objective reliability based design optimization using kriging surrogate model for cementless hip prosthesis, Comput Methods Biomech Biomed Eng., vol. 23, no. 12, pp. 854–867, 2020. DOI: 10.1080/10255842.2020.1768247.
  • T. W. Simpson, J. Peplinski, P. N. Koch, and J. K. Allen, On the use of statistics in design and the implications for deterministic computer experiments. In: Proceedings of the ASME 1997 Design Engineering Technical Conferences. Volume 3: 9th International Design Theory and Methodology Conference. Sacramento, California, USA. September 14–17, 1997. ASME. DOI: 10.1115/DETC97/DTM-3881.
  • R. H. Myers, and D. C. Montgomery, Response surface methodology, 2nd ed., Wiley, New York, 2002.
  • D. J. Lizotte, R. Greiner, and D. Schuurmans, An experimental methodology for response surface optimization methods, J. Glob. Optim., vol. 53, no. 4, pp. 699–736, 2012. DOI: 10.1007/s10898-011-9732-z.
  • E. Immonen, 2d shape optimization under proximity constraints by cfd and response surface methodology, Appl. Math. Modell., vol. 41, pp. 508–529, 2017. DOI: 10.1016/j.apm.2016.09.009.
  • J. Janusevskis, and R. Le Riche, Simultaneous kriging-based estimation and optimization of mean response, J. Glob. Optim., vol. 55, no. 2, pp. 313–336, 2013. DOI: 10.1007/s10898-011-9836-5.
  • T. Mukhopadhyay, S. Chakraborty, S. Dey, S. Adhikari, and R. Chowdhury, A critical assessment of kriging model variants for high-fidelity uncertainty quantification in dynamics of composite shells, Arch. Computat. Methods Eng., vol. 24, no. 3, pp. 495–518, 2017. DOI: 10.1007/s11831-016-9178-z.
  • Y. Shi, Z. Lu, L. Xu, and S. Chen, An adaptive multiple-kriging-surrogate method for time-dependent reliability analysis, Appl. Math. Modell., vol. 70, pp. 545– 571, 2019. DOI: 10.1016/j.apm.2019.01.040.
  • S. Soumitri Miriyala, P. Mittal, S. Majumdar, and K. Mitra, Comparative study of surrogate approaches while optimizing computationally expensive reaction networks, Chem. Eng. Sci., vol. 140, pp. 44–61, 2016. DOI: 10.1016/j.ces.2015.09.030.
  • S. Soumitri Miriyala, V. R. Subramanian, and K. Mitra, Transform-ann for online optimization of complex industrial processes: Casting process as case study, Eur. J. Oper. Res., vol. 264, no. 1, pp. 294–309, 2018. DOI: 10.1016/j.ejor.2017.05.026.
  • A. Durgude, A. Vipradas, S. Kishore, and S. Nimse, Design optimisation of brake disc geometry, Technical report, MAE 598-2016-11, Final Report of Andhra University, Visakhapatnam, 2016.
  • N. Stander, W. Roux, T. Goel, T. Eggleston, and K. Craig, Ls-opt user’s manual, Technical report, Livermore Software Technology Corporation, Livermore, California, 2010.
  • A. B. Ryberg, B. R. Domeij, and L. Nilsson, Metamodel-based multidisciplinary design optimization for automotive applications, Technical report, Linkping University, Division of Solid Mechanics, September, 2012.
  • M. Meckesheimer, R. R. Barton, T. W. Simpson, and A. J. Booker. Computationally Inexpensive Metamodel Assessment Strategies. Proceedings of the ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2A: 27th Design Automation Conference. Pittsburgh, Pennsylvania, USA. September 9–12, 2001. pp. 191–201. ASME. DOI: 10.1115/DETC2001/DAC-21028
  • F. Abid, A. Hami, T. Merzouki, L. Walha, and M. Haddar. An approach for the reliability-based design optimization of shape memory alloy structure, Mech. Based Des. Struct. Mach., no. 2, vol. 49, pagespp. 155–117, 2021. DOI: 10.1080/15397734.2019.1665541.
  • M. D. McKay, R. J. Beckman, and W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, no. 2, vol. 21, pp. 239–245, 1979. DOI: 10.2307/1268522.
  • H. B. Nielsen, S. N. Lophaven, J. Sndergaard, and A. Dace, A matlab kriging toolbox, Technical report, Technical University of Denmark, Denmark, 2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.