206
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Two-phase local/nonlocal mixture models for buckling analysis of higher-order refined shear deformation beams under thermal effect

ORCID Icon, ORCID Icon & ORCID Icon
Pages 7605-7622 | Received 23 Aug 2021, Accepted 03 Nov 2021, Published online: 29 Nov 2021

References

  • A. C. M. Chong, and D. C. C. Lam, Strain gradient plasticity effect in indentation hardness of polymers, J. Mater. Res., vol. 14, no. 10, pp. 4103–4110, 1999. DOI: 10.1557/JMR.1999.0554.
  • J. S. Stolken, and A. G. Evans, A microbend test method for measuring the plasticity length scale, Acta Mater., vol. 46, no. 14, pp. 5109–5115, 1998. DOI: 10.1016/S1359-6454(98)00153-0.
  • R. D. Mindlin, Micro-structure in linear elasticity, Arch. Rational Mech. Anal., vol. 16, no. 1, pp. 51–78, 1964. DOI: 10.1007/BF00248490.
  • R. D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct., vol. 1, no. 4, pp. 417–438, 1965. DOI: 10.1016/0020-7683(65)90006-5.
  • F. Yang, A. C. M. Chong, D. C. C. Lam, and P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., vol. 39, no. 10, pp. 2731–2743, 2002. DOI: 10.1016/S0020-7683(02)00152-X.
  • A. C. Eringen, and D. G. B. Edelen, On nonlocal elasticity, Int. J. Eng. Sci., vol. 10, no. 3, pp. 233–248, 1972. DOI: 10.1016/0020-7225(72)90039-0.
  • A. C. Eringen, Theory of nonlocal elasticity and some applications, Res. Mech., vol. 21, no. 4, pp. 313–342, 1987.
  • A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., vol. 54, no. 9, pp. 4703–4710, 1983. DOI: 10.1063/1.332803.
  • C. L. Li, H. L. Guo, X. G. Tian, and T. H. He, Nonlocal diffusion-elasticity based on nonlocal mass transfer and nonlocal elasticity and its application in shock-induced responses analysis, Mech. Adv. Mater. Struct., vol. 28, no. 8, pp. 827–838, 2021. DOI: 10.1080/15376494.2019.1601308.
  • W. Peng, L. Chen, and T. He, Nonlocal thermoelastic analysis of a functionally graded material microbeam, Appl. Math. Mech-Engl. Ed., vol. 42, no. 6, pp. 855–870, 2021. DOI: 10.1007/s10483-021-2742-9.
  • C. L. Li, X. G. Tian, and T. H. He, Nonlocal thermo-viscoelasticity and its application in size-dependent responses of bi-layered composite viscoelastic nanoplate under nonuniform temperature for vibration control, Mech. Adv. Mater. Struct., vol. 28, no. 17, pp. 1797–1811, 2021. DOI: 10.1080/15376494.2019.1709674.
  • F. Ebrahimi, and M. Karimiasl, Nonlocal and surface effects on the buckling behavior of flexoelectric sandwich nanobeams, Mech. Adv. Mater. Struct., vol. 25, no. 11, pp. 943–952, 2018. DOI: 10.1080/15376494.2017.1329468.
  • G. L. She, F. G. Yuan, Y. R. Ren, and W. S. Xiao, On buckling and postbuckling behavior of nanotubes, Int. J. Eng. Sci., vol. 121, pp. 130–142, 2017. DOI: 10.1016/j.ijengsci.2017.09.005.
  • M.-O. Belarbi, et al., Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory, Compos. Struct., vol. 264, pp. 113712, 2021. DOI: 10.1016/j.compstruct.2021.113712.
  • L. Li, and Y. J. Hu, Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory, Int. J. Eng. Sci., vol. 97, pp. 84–94, 2015. DOI: 10.1016/j.ijengsci.2015.08.013.
  • C. Li, L. Q. Yao, W. Q. Chen, and S. Li, Comments on nonlocal effects in nano-cantilever beams, Int. J. Eng. Sci., vol. 87, pp. 47–57, 2015. DOI: 10.1016/j.ijengsci.2014.11.006.
  • G. Romano, R. Barretta, M. Diaco, and F. M. de Sciarra, Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams, Int. J. Mech. Sci., vol. 121, pp. 151–156, 2017. DOI: 10.1016/j.ijmecsci.2016.10.036.
  • G. Romano, and R. Barretta, Nonlocal elasticity in nanobeams: the stress-driven integral model, Int. J. Eng. Sci., vol. 115, pp. 14–27, 2017. DOI: 10.1016/j.ijengsci.2017.03.002.
  • G. Romano, and R. Barretta, Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams, Compos. Part. B-Eng., vol. 114, pp. 184–188, 2017. DOI: 10.1016/j.compositesb.2017.01.008.
  • G. Romano, R. Barretta, and M. Diaco, On nonlocal integral models for elastic nano-beams, Int. J. Mech. Sci., vol. 131–132, pp. 490–499, 2017. vol DOI: 10.1016/j.ijmecsci.2017.07.013.
  • A. C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves, Int. J. Eng. Sci., vol. 10, no. 5, pp. 425–435, 1972. DOI: 10.1016/0020-7225(72)90050-X.
  • X. W. Zhu, and L. Li, Three-dimensionally nonlocal tensile nanobars incorporating surface effect: A self-consistent variational and well-posed model, Sci. China Technol. Sci., vol. 64, no. 11, pp. 1–14, 2021. DOI: 10.1007/s11431-021-1822-0.
  • L. Li, R. Lin, and T. Y. Ng, Contribution of nonlocality to surface elasticity, Int. J. Eng. Sci., vol. 152, pp. 103311, 2020. DOI: 10.1016/j.ijengsci.2020.103311.
  • X. W. Zhu, and L. Li, A well-posed Euler-Bernoulli beam model incorporating nonlocality and surface energy effect, Appl. Math. Mech-Engl. Ed., vol. 40, no. 11, pp. 1561–1588, 2019. DOI: 10.1007/s10483-019-2541-5.
  • X. W. Zhu, and L. Li, Closed form solution for a nonlocal strain gradient rod in tension, Int. J. Eng. Sci., vol. 119, pp. 16–28, 2017. DOI: 10.1016/j.ijengsci.2017.06.019.
  • R. Barretta, and F. M. de Sciarra, Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams, Int. J. Eng. Sci., vol. 130, pp. 187–198, 2018. DOI: 10.1016/j.ijengsci.2018.05.009.
  • Faghidian S. A, Higher–order nonlocal gradient elasticity: A consistent variational theory, Int. J. Eng. Sci., vol. 154, pp. 103337, 2020. DOI: 10.1016/j.ijengsci.2020.103337.
  • Y. B. Wang, K. Huang, X. W. Zhu, and Z. M. Lou, Exact solutions for the bending of Timoshenko beams using Eringen's two-phase nonlocal model, Math. Mech. Solids, vol. 24, no. 3, pp. 559–572, 2019. DOI: 10.1177/1081286517750008.
  • Y. B. Wang, X. W. Zhu, and H. H. Dai, Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model, AIP Adv., vol. 6, no. 8, pp. 085114, 2016. DOI: 10.1063/1.4961695.
  • J. Fernandez-Saez, and R. Zaera, Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory, Int. J. Eng. Sci., vol. 119, pp. 232–248, 2017. DOI: 10.1016/j.ijengsci.2017.06.021.
  • X. W. Zhu, Y. B. Wang, and H. H. Dai, Buckling analysis of Euler-Bernoulli beams using Eringen's two-phase nonlocal model, Int. J. Eng. Sci., vol. 116, pp. 130–140, 2017. DOI: 10.1016/j.ijengsci.2017.03.008.
  • M. Fakher, S. Behdad, A. Naderi, and S. Hosseini-Hashemi, Thermal vibration and buckling analysis of two-phase nanobeams embedded in size dependent elastic medium, Int. J. Mech. Sci., vol. 171, pp. 105381, 2020. DOI: 10.1016/j.ijmecsci.2019.105381.
  • R. Barretta, R. Luciano, F. M. de Sciarra, and G. Ruta, Stress-driven nonlocal integral model for Timoshenko elastic nano-beams, Eur. J. Mech. A-Solid., vol. 72, pp. 275–286, 2018. DOI: 10.1016/j.euromechsol.2018.04.012.
  • P. Zhang, H. Qing, and C.-F. Gao, Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model, Compos. Struct., vol. 245, pp. 112362, 2020. DOI: 10.1016/j.compstruct.2020.112362.
  • R. Barretta, F. Fabbrocino, R. Luciano, F. M. de Sciarra, and G. Ruta, Buckling loads of nano-beams in stress-driven nonlocal elasticity, Mech. Adv. Mater. Struct., vol. 27, no. 11, pp. 869–875, 2020. DOI: 10.1080/15376494.2018.1501523.
  • H. Darban, F. Fabbrocino, L. Feo, and R. Luciano, Size-dependent buckling analysis of nanobeams resting on two-parameter elastic foundation through stress-driven nonlocal elasticity model, Mech. Adv. Mater. Struct., pp. 1–9, 2020. DOI: 10.1080/15376494.2020.1739357.
  • P. Zhang, and H. Qing, Buckling analysis of curved sandwich microbeams made of functionally graded materials via the stress-driven nonlocal integral model, Mech. Adv. Mater. Struct., pp. 1–18, 2020. DOI: 10.1080/15376494.2020.1811926.
  • R. Barretta, A. Caporale, S. A. Faghidian, R. Luciano, F. M. de Sciarra, and C. M. Medaglia, A stress-driven local-nonlocal mixture model for Timoshenko nano-beams, Compos. Part. B-Eng., vol. 164, pp. 590–598, 2019. DOI: 10.1016/j.compositesb.2019.01.012.
  • R. Barretta, F. Fabbrocino, R. Luciano, and F. M. de Sciarra, Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams, Phys. E-Low-Dimension. Syst. Nanostruct., vol. 97, pp. 13–30, 2018. DOI: 10.1016/j.physe.2017.09.026.
  • R. Luciano, A. Caporale, H. Darban, and C. Bartolomeo, Variational approaches for bending and buckling of non-local stress-driven Timoshenko nano-beams for smart materials, Mech. Res. Commun., vol. 103, no. 7, pp. 103470, 2020. pp. DOI: 10.1016/j.mechrescom.2019.103470.
  • H. T. Thai, T. P. Vo, T. K. Nguyen, and S. E. Kim, A review of continuum mechanics models for size-dependent analysis of beams and plates, Compos. Struct., vol. 177, pp. 196–219, 2017. DOI: 10.1016/j.compstruct.2017.06.040.
  • A. Garg, H. D. Chalak, M. O. Belarbi, A. M. Zenkour, and R. Sahoo, Estimation of carbon nanotubes and their applications as reinforcing composite materials–An engineering review, Compos. Struct., vol. 272, pp. 114234, 2021. DOI: 10.1016/j.compstruct.2021.114234.
  • A. Garg, and H. D. Chalak, A review on analysis of laminated composite and sandwich structures under hygrothermal conditions, Thin. Wall. Struct., vol. 142, pp. 205–226, 2019. DOI: 10.1016/j.tws.2019.05.005.
  • A. Garg, M.-O. Belarbi, H. D. Chalak, and A. Chakrabarti, A review of the analysis of sandwich FGM structures, Compos. Struct., vol. 258, pp. 113427, 2021. DOI: 10.1016/j.compstruct.2020.113427.
  • H. T. Thai, and T. P. Vo, Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories, Int. J. Mech. Sci., vol. 62, no. 1, pp. 57–66, 2012. DOI: 10.1016/j.ijmecsci.2012.05.014.
  • T. P. Vo, and H. T. Thai, Static behavior of composite beams using various refined shear deformation theories, Compos. Struct., vol. 94, no. 8, pp. 2513–2522, 2012. DOI: 10.1016/j.compstruct.2012.02.010.
  • J. N. Reddy, Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci., vol. 45, no. 2-8, pp. 288–307, 2007. DOI: 10.1016/j.ijengsci.2007.04.004.
  • F. Ebrahimi, and M. R. Barati, Thermal buckling analysis of size-dependent FG nanobeams based on the third-order shear deformation beam theory, Acta Mech. Solida Sin., vol. 29, no. 5, pp. 547–554, 2016. DOI: 10.1016/S0894-9166(16)30272-5.
  • F. Ebrahimi, and M. R. Barati, A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams, Compos. Struct., vol. 159, pp. 174–182, 2017. DOI: 10.1016/j.compstruct.2016.09.058.
  • S. Sahmani, and B. Safaei, Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams, Appl. Math. Model., vol. 82, pp. 336–358, 2020. DOI: 10.1016/j.apm.2020.01.051.
  • M. N. M. Allam, and A. F. Radwan, Nonlocal strain gradient theory for bending, buckling, and vibration of viscoelastic functionally graded curved nanobeam embedded in an elastic medium, Adv. Mech. Eng., vol. 11, no. 4, pp. 168781401983706, 2019. DOI: 10.1177/1687814019837067.
  • R. Barretta, S. A. Faghidian, R. Luciano, C. M. Medaglia, and R. Penna, Stress-driven two-phase integral elasticity for torsion of nano-beams, Compos. Part. B-Eng., vol. 145, pp. 62–69, 2018. DOI: 10.1016/j.compositesb.2018.02.020.
  • A. Apuzzo, C. Bartolomeo, R. Luciano, and D. Scorza, Novel local/nonlocal formulation of the stress-driven model through closed form solution for higher vibrations modes, Compos. Struct., vol. 252, pp. 112688, 2020. DOI: 10.1016/j.compstruct.2020.112688.
  • P. Khodabakhshi, and J. N. Reddy, A unified integro-differential nonlocal model, Int. J. Eng. Sci., vol. 95, pp. 60–75, 2015. DOI: 10.1016/j.ijengsci.2015.06.006.
  • X. W. Wang, Novel differential quadrature element method for vibration analysis of hybrid nonlocal Euler-Bernoulli beams, Appl. Math. Lett., vol. 77, pp. 94–100, 2018. DOI: 10.1016/j.aml.2017.10.003.
  • M. Al-Shujairi, and C. Mollamahmutoglu, Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect, Compos. Part. B-Eng., vol. 154, pp. 292–312, 2018. DOI: 10.1016/j.compositesb.2018.08.103.
  • F. Tornabene, N. Fantuzzi, F. Ubertini, and E. Viola, Strong formulation finite element method based on differential quadrature: A survey, Appl. Mech. Rev., vol. 67, no. 2, pp. 55, 2015. DOI: 10.1115/1.4028859.
  • C. H. Jin, and X. W. Wang, Quadrature element method for vibration analysis of functionally graded beams, Eng. Comput., vol. 34, no. 4, pp. 1293–1313, 2017. DOI: 10.1108/EC-07-2016-0271.
  • T. P. Vo, H. T. Thai, T. K. Nguyen, A. Maheri, and J. Lee, Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory, Eng. Struct., vol. 64, pp. 12–22, 2014. DOI: 10.1016/j.engstruct.2014.01.029.
  • P. Zhang, and H. Qing, On well-posedness of two-phase nonlocal integral models for higher-order refined shear deformation beams, Appl. Math. Mech-Engl. Ed., vol. 42, no. 7, pp. 931–950, 2021. DOI: 10.1007/s10483-021-2750-8.
  • P. Zhang, and H. Qing, Well-posed two-phase nonlocal integral models for free vibration of nanobeams in context with higher-order refined shear deformation theory, J. Vib. Control., pp. 107754632110399, 2021. DOI: 10.1177/10775463211039902.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.