165
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigation of fracture behavior by crazing in graphene reinforced polymers

, & ORCID Icon
Pages 7703-7711 | Received 15 Aug 2021, Accepted 07 Nov 2021, Published online: 29 Nov 2021

References

  • D.K. Rajak, D.D. Pagar, P.L. Menezes, and E. Linul, Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications, Polymers, vol. 11, 2019, DOI: 10.3390/polym11101667.
  • T. Kuilla, et al., Recent advances in graphene based polymer composites, Prog. Polym. Sci., vol. 35, no. 11, pp. 1350–1375, 2010. DOI: 10.1016/j.progpolymsci.2010.07.005.
  • Y. Wang, C. Feng, C. Santiuste, Z. Zhao, and J. Yang, Buckling and postbuckling of dielectric composite beam reinforced with Graphene Platelets (GPLs), Aerosp. Sci. Technol., vol. 91, pp. 208–218, 2019, DOI: 10.1016/j.ast.2019.05.008.
  • Y. Wang, et al., Nonlinear static and dynamic responses of graphene platelets reinforced composite beam with dielectric permittivity, Appl. Math. Modell., vol. 71, pp. 298–315, 2019, DOI: 10.1016/j.apm.2019.02.025.
  • M. Bhattacharya, Polymer nanocomposites—a comparison between carbon nanotubes, graphene, and clay as nanofillers, Materials., vol. 9, no. 4, pp. 262, 2016. DOI: 10.3390/ma9040262.
  • K. Hu, D.D. Kulkarni, I. Choi, and V.V. Tsukruk, Graphene-polymer nanocomposites for structural and functional applications, Prog. Polym. Sci., vol. 39, no. 11, pp. 1934–1972, 2014. DOI: 10.1016/j.progpolymsci.2014.03.001.
  • Z. Jia, X. Feng, and Y. Zou, Graphene reinforced epoxy adhesive for fracture resistance, Composites B Eng., vol. 155, pp. 457–462, 2018, DOI: 10.1016/j.compositesb.2018.09.093.
  • Y.J. Wan, L.X. Gong, L.C. Tang, L.B. Wu, and J.X. Jiang, Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide, Composites A Appl. Sci. Manuf., vol. 64, pp. 79–89, 2014,DOI: 10.1016/j.compositesa.2014.04.023.
  • S. Chandrasekaran, et al., Fracture toughness and failure mechanism of graphene based epoxy composites, Compos. Sci. Technol., vol. 97, pp. 90–99, 2014, DOI: 10.1016/j.compscitech.2014.03.014.
  • R.P. Kambour, C.L. Gruner, and E.E. Romagosa, Solvent crazing of dry polystyrene and dry crazing of plasticized polystyrene, J. Polym. Sci. Polym. Phys. Ed., vol. 11, no. 10, pp. 1879–1890, 1973. DOI: 10.1002/pol.1973.180111003.
  • R. Estevez and E. Van der Giessen, Intrinsic Molecular Mobility and Toughness of Polymers II (ed. Hans-Henning Kausch) 195–234 Springer Berlin, Heidelberg, 2005.
  • F. Xiao and W.A. Curtin, Numerical investigation of polymer craze growth and fracture, Macromolecules., vol. 28, no. 5, pp. 1654–1660, 1995. DOI: 10.1021/ma00109a043.
  • A.S. Argon, and J.G. Hannoosh, Initiation of crazes in polystyrene, Philos. Mag., vol. 36, no. 5, pp. 1195–1216, 1977. DOI: 10.1080/14786437708239789.
  • A.S. Argon, Craze initiation in glassy polymers - Revisited, Polymer, vol. 52, no. 10, pp. 2319–2327, 2011. DOI: 10.1016/j.polymer.2011.03.019.
  • Y. Sha, C.Y. Hui, and E.J. Kramer, Simulation of craze failure in a glassy polymer: rate dependent drawing and rate dependent failure models, J. Mater. Sci., vol. 34, no. 15, pp. 3695–3707, 1999. DOI: 10.1023/A:1004607523161.
  • D.K. Mahajan and A. Hartmaier, Mechanisms of crazing in glassy polymers revealed by molecular dynamics simulations, Phys. Rev. E., vol. 86, no. 2, 2012. DOI: 10.1103/PhysRevE.86.021802.
  • J. Rottler and M.O. Robbins, Growth, microstructure, and failure of crazes in glassy polymers, Phys. Rev. E. ., vol. 68, no. 1, 2003. DOI: 10.1103/PhysRevE.68.011801.
  • M. Hamedi, H. Golestanian, Y.T. Beni, and K.A. Zarasvand, Evaluation of fracture energy for nanocomposites reinforced with carbon nanotubes using numerical and micromechanical methods, Mech. Adv. Mater. Struct. ., vol. 26, no. 11, pp. 984–992, 2019. DOI: 10.1080/15376494.2018.1432787.
  • H. Golestanian, and M. Hamedi, Fracture analysis of sinusoidal CNT-based nanocomposites with uniform and nonuniform CNT distributions, Nano., vol. 10, no. 04, pp. 1550058, 2015. DOI: 10.1142/S1793292015500587.
  • M. Haghighi, A. Khodadadi, H. Golestanian, and F. Aghadavoudi, Effects of defects and functional groups on graphene and nanotube thermoset epoxy-based nanocomposites mechanical properties using molecular dynamics simulation, Polym. Polym. Compos., vol. 29, no. 6, pp. 629–639, 2021. DOI: 10.1177/0967391120929075.
  • M.G.A. Tijssens, E. van der Giessen, and L.J. Sluys, Modeling of crazing using a cohesive surface methodology, Mech. Mater., vol. 32, no. 1, pp. 19–35, 2000. DOI: 10.1016/S0167-6636(99)00044-7.
  • S. Socrate, M.C. Boyce, and A. Lazzeri, A micromechanical model for multiple crazing in high impact polystyrene, Mech. Mater., vol. 33, no. 3, pp. 155–175, 2001. DOI: 10.1016/S0167-6636(00)00068-5.
  • R. Sharma, and S. Socrate, Micromechanics of uniaxial tensile deformation and failure in high impact polystyrene (HIPS), Polymer., vol. 50, no. 14, pp. 3386–3395, 2009. DOI: 10.1016/j.polymer.2009.04.073.
  • Y.M. Zhang, W.G. Zhang, M. Fan, and Z.M. Xiao, Stress investigation on a cracked craze interacting with a nearby circular inclusion in polymer composites, Acta Mech., vol. 228, no. 4, pp. 1213–1228, 2017. DOI: 10.1007/s00707-016-1773-4.
  • Y.M. Zhang, W.G. Zhang, M. Fan, and Z.M. Xiao, On the interaction between a full craze and a near-by circular inclusion in glassy polymers, Eng. Fail. Anal., vol. 79, pp. 441–454,2017. DOI: 10.1016/j.engfailanal.2017.05.029.
  • Y.M. Zhang, W.G. Zhang, M. Fan, and Z.M. Xiao, On the mechanical behaviours of a craze in particulate-polymer composites, Philos. Mag., vol. 98, no. 15, pp. 1376–1396, 2018. DOI: 10.1080/14786435.2018.1438681.
  • Y. Sha, C.Y. Hui, A. Ruina, and E.J. Kramer, Continuum and discrete modeling of craze failure at a crack-tip in a glassy polymer, Macromolecules., vol. 28, no. 7, pp. 2450–2459, 1995. DOI: 10.1021/ma00111a044.
  • M. Heidarhaei, M. Shariati, and H.R. Eipakchi, Analytical investigation of interfacial debonding in graphene-reinforced polymer nanocomposites with cohesive zone interface, Mech. Adv. Mater. Struct., vol. 26, no. 12, pp. 1008–1017, 2019. DOI: 10.1080/15376494.2018.1430260.
  • M. Heidarhaei, M. Shariati, and H.R. Eipakchi, Effect of interfacial debonding on stress transfer in graphene reinforced polymer nanocomposites, Int. J. Damage Mech., vol. 27, no. 7, pp. 1105–1127, 2018. DOI: 10.1177/1056789517724857.
  • W. Tian, L. Qi, X. Chao, J. Liang, and M. Fu, Periodic boundary condition and its numerical implementation algorithm for the evaluation of effective mechanical properties of the composites with complicated micro-structures, Compos. B Eng., vol. 162, pp. 1–10, 2019,DOI: 10.1016/j.compositesb.2018.10.053.
  • H. Tada, P.C. Paris, and G.R. Irwin, The Stress Analysis of Cracks Handbook Del Research Corporation, Hellertown, 1973.
  • N. Domun, et al., Improving the fracture toughness properties of epoxy using graphene nanoplatelets at low filler content, Nanocomposites., vol. 3, no. 3, pp. 85–96, 2017. DOI: 10.1080/20550324.2017.1365414.
  • M.A. Rafiee, et al., Fracture and fatigue in graphene nanocomposites, Small, vol. 6, no. 2, pp. 179–183, 2010. DOI: 10.1002/smll.200901480.
  • X. Wang, J. Jin, and M. Song, An investigation of the mechanism of graphene toughening epoxy, Carbon, vol. 65, pp. 324–333, 2013. DOI: 10.1016/j.carbon.2013.08.032.
  • R. Marissen, Craze growth mechanics, Polymer., vol. 41, no. 3, pp. 1119–1129, 2000. DOI: 10.1016/S0032-3861(99)00234-7.
  • U.R. Hashim, and A. Jumahat, Improved tensile and fracture toughness properties of graphene nanoplatelets filled epoxy polymer via solvent compounding shear milling method, Mater. Res. Express, vol. 6, no. 2, pp. 025303, 2018. DOI: 10.1088/2053-1591/aaeaf0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.