445
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Simulation of bridging mechanisms in complex laminates using a hybrid PF-CZM method

, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 7743-7771 | Received 22 Jul 2021, Accepted 11 Nov 2021, Published online: 08 Jan 2022

References

  • Y.B.S. Sudhir, P.R. Budarapu, N. Madhavi, and Y. Krishna, Buckling analysis of thin wall stiffened composite panels, Comput. Mater. Sci., vol. 96, pp. 459–471, 2015. DOI: 10.1016/j.commatsci.2014.06.007..
  • Y.B.S. Sudhir, P.R. Budarapu, Y. Krishna, and S. Devraj, Studies on ballistic impact of the composite panels, Theor. Appl. Fract. Mech., vol. 72, pp. 2–12, 2014. DOI: 10.1016/j.tafmec.2014.07.010.
  • H. Shetty, D. Sethuram, B. Rammohan, and P.R. Budarapu, Low-velocity impact studies on GFRP and hybrid composite structures, Int. J. Adv. Eng. Sci. Appl. Math., vol. 12, nos. 3–4, pp. 125–141, 2020. DOI: 10.1007/s12572-021-00287-9.
  • P.R. Budarapu, B. Rammohan, S.K. Vijay, B.D. Satish, and R. Raghunathan, Aero-elastic analysis of stiffened composite wing structure, J. Vib. Eng. Technol., vol. 8, no. 3, pp. 255–264, 2009.
  • Y. Kumar, B. Rammohan, P.R. Budarapu, D.K. Harursampath, and K.N. Seetharamu, Dynamic instability analysis of multifunctional composite structures, AIAA J., vol. 57, no. 10, pp. 4214–4241, 2019. DOI: 10.2514/1.J057479.
  • I.G. García, M. Paggi, and V. Mantič, Fiber-size effects on the onset of fiber–matrix debonding under transverse tension: a comparison between cohesive zone and finite fracture mechanics models, Eng. Fract. Mech., vol. 115, pp. 96–110, 2014. DOI: 10.1016/j.engfracmech.2013.10.014.
  • B.L. Wang, Y.G. Sun, and H.Y. Zhang, Multiple cracking of fiber/matrix composites-analysis of normal extension, Int. J. Solids Struct., vol. 45, nos. 14–15, pp. 4032–4048, 2008. DOI: 10.1016/j.ijsolstr.2008.02.026.
  • P.R. Budarapu, S. Thakur, S. Kumar, and M. Paggi, Micromechanics of engineered interphases in nacre-like composite structures, Mech. Adv. Mater. Struct., vol. 28, no. 22, pp. 2316–2327, 2021. DOI: 10.1080/15376494.2020.1733714.
  • S.L. Phoenix, and I.J. Beyerlein, Comprehensive Composites, Volume 1, Chapter Statistical Strength Theory for Fibrous Composite Materials, Elsevier, Amsterdam, pp 559–639, 2000.
  • J. Inoue, S. Nambu, Y. Ishimoto, and T. Koseki, Fracture elongation of brittle/ductile multilayered steel composites with a strong interface, Scr. Mater., vol. 59, no. 10, pp. 1055–1058, 2008. DOI: 10.1016/j.scriptamat.2008.07.020.
  • F. Rebillat, J. Lamon, and A. Guette, The concept of a strong interface applied to sic/sic composites with a bn interphase, Acta Mater., vol. 48, nos. 18–19, pp. 4609–4618, 2000. DOI: 10.1016/S1359-6454(00)00247-0.
  • H. Liu and S. M. Hsu, Fracture behavior of multilayer silicon nitride/boron nitride ceramics, J. Am. Ceram. Soc., vol. 79, no. 9, pp. 2452–2457, 1996. DOI: 10.1111/j.1151-2916.1996.tb08996.x.
  • J. Cook, and J.E. Gordon, A mechanism for the control of crack propagation in all-brittle systems, Proc. Roy. Soc. Lond. Ser. A. Math. Phys. Sci., vol. 282, no. 1391, pp. 508–520, 1964.
  • P.R. Budarapu, S. Kumar, B. Gangadhara Prusty, and M. Paggi, Stress transfer through the interphase in curved-fiber pullout tests of nanocomposites, Compos. Part B: Eng., vol. 165, pp. 417–434, 2019. DOI: 10.1016/j.compositesb.2018.12.116.
  • S. Bueno, and C. Baudin, Design and processing of a ceramic laminate with high toughness and strong interfaces, Compos. Part A: Appl. Sci. Manufact., vol. 40, no. 2, pp. 137–143, 2009. DOI: 10.1016/j.compositesa.2008.10.012.
  • V. Tvergaard, Effect of fibre debonding in a whisker-reinforced metal, Mater. Sci. Eng. A., vol. 125, no. 2, pp. 203–213, 1990. DOI: 10.1016/0921-5093(90)90170-8.
  • A.R. Zak, and M.L. Williams, Crack point stress singularities at a bi-material interface, J. Appl. Mech., vol. 30, no. 1, pp. 142–143, 1963. DOI: 10.1115/1.3630064.
  • M.Y. He and J. Hutchinson, Crack deflection at an interface between dissimilar elastic materials, Int. J. Solids Struct., vol. 25, pp. 1053–1067, 1989.
  • J.P. Parmigiani and M.D. Thouless, The roles of toughness and cohesive strength on crack deflection at interfaces, J. Mech. Phys. Solids., vol. 54, no. 2, pp. 266–287, 2006. DOI: 10.1016/j.jmps.2005.09.002.
  • G. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids., vol. 46, no. 8, pp. 1319–1342, 1998. DOI: 10.1016/S0022-5096(98)00034-9.
  • C. Miehe, F. Welschinger, and M. Hofacker, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field Fe implementations, Int. J. Numer. Meth. Eng., vol. 83, no. 10, pp. 1273–1311, 2010. DOI: 10.1002/nme.2861.
  • A. Raina and C. Miehe, A phase-field model for fracture in biological tissues, Biomech. Model. Mechanobiol., vol. 15, no. 3, pp. 479–496, 2016. DOI: 10.1007/s10237-015-0702-0.
  • C. Kuhn and R. Müller, Phase field simulation of thermomechanical fracture. In: PAMM: Proceedings in Applied Mathematics and Mechanics, Wiley Online Library, Vol. 9, pp. 191–192, 2009. DOI: 10.1002/pamm.200910070.
  • M.A. Msekh, J.M. Sargado, M. Jamshidian, P.M. Areias, and T. Rabczuk, Abaqus implementation of phase-field model for brittle fracture, Comput. Mater. Sci., vol. 96, pp. 472–484, 2015. DOI: 10.1016/j.commatsci.2014.05.071.
  • V. Carollo, J. Reinoso, and M. Paggi, Modeling complex crack paths in ceramic laminates: a novel variational framework combining the phase field method of fracture and the cohesive zone model, J. Eur. Ceram. Soc., vol. 38, no. 8, pp. 2994–3003, 2018. DOI: 10.1016/j.jeurceramsoc.2018.01.035.
  • M. Paggi and J. Reinoso, Revisiting the problem of a crack impinging on an interface: a modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model, Comput. Methods Appl. Mech. Eng., vol. 321, pp. 145–172, 2017. DOI: 10.1016/j.cma.2017.04.004.
  • V. Carollo, J. Reinoso, and M. Paggi, A 3d finite strain model for intralayer and interlayer crack simulation coupling the phase field approach and cohesive zone model, Compos. Struct., vol. 182, pp. 636–651, 2017. DOI: 10.1016/j.compstruct.2017.08.095.
  • J. Reinoso, P. Durand, P. R. Budarapu, and M. Paggi, Crack patterns in heterogenous rocks using a combined phase field–cohesive interface modeling approach: a numerical study, Energies, vol. 12, no. 6, pp. 965, 2019. DOI: 10.3390/en12060965.
  • Hirshikesh, S. Natarajan, and R.K. Annabattula, Modeling crack propagation in variable stiffness composite laminates using the phase field method, Compos. Struct., vol. 209, pp. 424–433, 2019. DOI: 10.1016/j.compstruct.2018.10.083.
  • D. Pranavi, A. Rajagopal, and J.N. Reddy, Interaction of anisotropic crack phase field with interface cohesive zone model for fiber reinforced composites, Compos. Struct., vol. 270, pp. 114038, 2021. DOI: 10.1016/j.compstruct.2021.114038.
  • C. Miehe, M. Hofacker, and F. Welschinger, A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Eng., vol. 199, nos. 45–48, pp. 2765–2778, 2010. DOI: 10.1016/j.cma.2010.04.011.
  • C.V. Verhoosel and R. de Borst, A phase-field model for cohesive fracture, Int. J. Numer. Meth. Eng., vol. 96, no. 1, pp. 43–62, 2013. DOI: 10.1002/nme.4553.
  • B. Bourdin, G.A. Francfort, and Jean-Jacques Marigo, The variational approach to fracture, J. Elast., vol. 91, nos. 1–3, pp. 5–148, 2008. DOI: 10.1007/s10659-007-9107-3.
  • J.G. Williams and H. Hadavinia, Analytical solutions for cohesive zone models, J. Mech. Phys. Solids., vol. 50, no. 4, pp. 809–825, 2002. DOI: 10.1016/S0022-5096(01)00095-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.